Это ОЧЕНЬ полезная задача. Все обозначения на чертеже, пояснять, что есть что - не буду. Из подобия треугольников ADE и BCE следует x/b = (x + b)/a; что означает, что AC делит ED пропорционально AD и AE, то есть AC - биссектриса угла EAD. Далее, угол BCE = угол ADE, следовательно, оба треугольника BCE и ACD - равнобедренные, имеют равные углы при основании и равные основания, так как BC = CD. Таким образом, x = BE = EC = a; Итак, в равнобедренном треугольнике AED основание AD = биссектриса AC = отрезок от вершины до основания биссектрисы EC. Этот треугольник полезно запомнить - и сейчас станет ясно, почему. Если обозначить угол CAD = α; то теперь очевидно, что угол CDA = угол ACD = 2α; (AC - биссектриса угла А, и не надо забывать, что и трапеция равнобедренная). Угол BCA = α; поэтому угол BCD = 3α; и 5α = 180°; откуда α = 36°; углы трапеции равны 108° и 72°; это ответ :)
а теперь - почему так устроенный треугольник AED так важен. Поскольку x = a; то (a + b)/a = a/b; если обозначить b/a = y; то 1 + y = 1/y; или y^2 + y - 1 = 0; откуда y = (√5 - 1)/2; Отсюда получается cos(72°) = (a/2)/(a + b) = (1/2)/(1 + b/a) = 1/(2 + 2y) = 1/(√5 + 1) = (√5 - 1)/4; cos(72°) = (√5 - 1)/4; то есть получено выражение в радикалах для косинуса угла 72°; конечно же, cos(72°) = sin(18°); и это означает, что получены выражения в радикалах для всех углов, кратных 18° (ну, я их вычислять тут не буду, это и не важно).
1) Прямые N1N4 и TN3 являются пересекающимися или скрещивающимися?
Для ответа на этот вопрос нам нужно понять взаимное положение прямых N1N4 и TN3. Для этого давай соединим эти точки и посмотрим на получившуюся фигуру.
Как ты видишь, у нас есть две пары противоположных углов, образованных пересекающимися прямыми. В таких случаях углы равны. Значит, у нас имеется две пары равных углов: угол N1TN4 равен углу N3TN4, а угол N4TN3 равен углу N1TN4. Таким образом, прямые N1N4 и TN3 являются пересекающимися.
2) Найди угол между воображаемой линией N1N4 и лучом TN3.
Исходя из информации в задаче, у нас имеется прямоугольный треугольник N3TN2. Мы знаем, что угол TN2N3 равен 72 градуса. Также, из условия задачи, угол N2TN3 равен 63 градуса.
Если мы знаем два угла треугольника, то мы можем найти третий угол, используя свойство суммы углов треугольника (сумма углов треугольника равна 180 градусов).
Таким образом, угол N3N2T = 180 - (72 + 63) = 45 градусов.
Теперь, чтобы найти угол между воображаемой линией N1N4 и лучом TN3, нам нужно вычесть угол N3N2T из угла N3TN2.
Все обозначения на чертеже, пояснять, что есть что - не буду.
Из подобия треугольников ADE и BCE следует
x/b = (x + b)/a;
что означает, что AC делит ED пропорционально AD и AE, то есть AC - биссектриса угла EAD.
Далее, угол BCE = угол ADE, следовательно, оба треугольника BCE и ACD - равнобедренные, имеют равные углы при основании и равные основания, так как BC = CD.
Таким образом, x = BE = EC = a;
Итак, в равнобедренном треугольнике AED основание AD = биссектриса AC = отрезок от вершины до основания биссектрисы EC. Этот треугольник полезно запомнить - и сейчас станет ясно, почему.
Если обозначить угол CAD = α; то теперь очевидно,
что угол CDA = угол ACD = 2α; (AC - биссектриса угла А, и не надо забывать, что и трапеция равнобедренная). Угол BCA = α; поэтому угол BCD = 3α; и
5α = 180°; откуда α = 36°;
углы трапеции равны 108° и 72°; это ответ :)
а теперь - почему так устроенный треугольник AED так важен.
Поскольку x = a; то (a + b)/a = a/b;
если обозначить b/a = y; то 1 + y = 1/y; или y^2 + y - 1 = 0;
откуда y = (√5 - 1)/2;
Отсюда получается cos(72°) = (a/2)/(a + b) = (1/2)/(1 + b/a) = 1/(2 + 2y) = 1/(√5 + 1) = (√5 - 1)/4;
cos(72°) = (√5 - 1)/4; то есть получено выражение в радикалах для косинуса угла 72°; конечно же, cos(72°) = sin(18°); и это означает, что получены выражения в радикалах для всех углов, кратных 18° (ну, я их вычислять тут не буду, это и не важно).