Проведем дополнительно BC. Следовательно углы OBC и OCB(ACB) будут равны. Поэтому в итоге получаем: ACB=(180-74)/2=53 градуса. п.с.: AOD=BOC как накрест лежащие если что. п.с.2: из 180 вычитаю т.к. сумма углов в треугольнике не может превышать 180 градусов.
1. Утверждение верное. В параллелограмме противоположные углы равны. Значит имеется 2 пары равных углов. Значит, имеется два разных угла. Но, только в том случае, если параллелограмм не прямоугольник и не квадрат. 2. Утверждение ложное. Если бы в треугольнике было хотя бы два тупых угла (то есть больше 90 градусов) то сумма этих двух углов уже была бы больше 180 градусов. Если в треугольнике один угол тупой, то два остальных только острые. В сумме эти три угла должны дать 180 градусов. 3. Утверждение ложное. Площадь прямоугольника равна произведению длин двух его смежных сторон.
АС - основание, значит угол С лежит при основании. В равнобедренном треугольнике углы при основании равны. Сумма углов треугольника равна 180 градусов. Внешний угол треугольника равен сумме двух углов треугольник, несмежных с ним. Т. к. внешний угол при вершине С - смежный с углом С, их сумма равна 180 градусов. Угол С равен 180-120=60 градусов. Угол А = угол С (углы при основании равнобедренного треугольника) = 60 градусов. Угол В равен 180-(60+60)=60 градусов. Т. к. все углы треугольника равны 60, треугольник равносторонний. В равностороннем треугольнике все стороны равны, следовательно, все стороны в треугольнике АВС равны 42 см (АВ=ВС=АС=42 см).
Поэтому в итоге получаем: ACB=(180-74)/2=53 градуса.
п.с.: AOD=BOC как накрест лежащие если что.
п.с.2: из 180 вычитаю т.к. сумма углов в треугольнике не может превышать 180 градусов.