Задача решается через подобие треугольников В подобных треугольниках соответствующие стороны пропорциональны. Первый треугольник АВС, где: АВ - это высота столба, АВ=5,4 (м); АС - длина тени столба, ее нужно найти, АС=х (м); угол А=90°, угол В - это угол, под которым падает луч солнца. Второй треугольник КНР, где: КН - это рост человека, КН=170 (см)=1,7 (м); КР - это длина тени человека, КР=1 (м); угол К=90°; угол Н - это угол, под которым падает луч солнца. Прямоугольные треугольники АВС и КНР подобны по острому углу: уг.В=уг.Н; Из подобия треугольников следует соотношение: АВ/КН=АС/КР; 5,4/1,7=х/1; х=3 3/17 (м); ответ: 3 3/17
Решение Пусть данный треугольник будет АВС. Угол В=105º, угол С=45º Найдем третий угол треугольника: угол А=180-*105+45)=30º Угол А - наименьший, и против него лежит наименьшая сторона ВС ∆ АВС. Проведем высоту ВН и получим равнобедренный прямоугольный треугольник ВНС. ВН=НС По т. Пифагора ВН=7 Или ВН=ВС*sin 45º=7 Катет ВН прямоугольного ∆ ВАН противолежит углу 30º и равен половине гипотенузы ВА АВ Найдем угол А - равен 30º Этому углу противолежит сторона ВС =7√2 Тогда по т.синусов АВ:sin 45º=BC:sin 30º (АВ√2):2=(7√2):0,5⇒ АВ=7*2=14 см
так как выполняются строгие неравенства треугольника
AB<AC+BC
AC<AB+BC
BC<AB+AC
значит ABC нормальный треугольник, и ABC не лежат на одной прямой