Треугольник равнобедренный, значит боковые стороны равны.
1 случай:
Пусть х(см)-длина боковой стороны, тогда (х-4)см - длина основания, по условию периметр равен 15см. Составим и решим уравнение:
х+х+(х-4)=15;
х+х+х-4=15;
3х=19,
х=19:3
х=6 1/3
6 1/3(см)-длина одной боковой стороны
6 1/3 +6 1/3=12 2/3(см)- сумма боковых сторон.
2 случай:
Пусть х(см)-длина основания, тогда длина боковой стороны (х-4)см. Составим и решим уравнение:
х+(х-4)+(х-4)=15;
х+х-4+х-4=15;
3х=23,
х=7 2/3
7 2/3(см)-длина основания
7 2/3-4=3 2/3(см)-длина боковой стороны
3 2/3+3 2/3=7 1/3(см)-сумма боковых сторон (не удовлетворяет теореме о неравенстве треугольника)
ответ: 12 2/3(см).
см³.
Обозначим данную пирамиду буквами
см.
Проведём высоту пирамиды SO.
Начертим около этой пирамиды конус.
Так как конус описан около данной пирамиды, то высота конуса совпадает с высотой данной пирамиды.
=======================================================
Так как данная пирамида - правильная, треугольная ⇒ основание данной пирамиды - правильный треугольник.
см.
Проведём высоту в
- прямоугольный, так как
- высота пирамиды.
- прямоугольный, так как
- высота
.
Так как - равносторонний ⇒
- высота, медиана и биссектриса
см, так как
- медиана.
Найдём по теореме Пифагора
.
см.
Точка - пересечение медиан и делит их в отношении
, считая от вершины.
см
см.
Также - радиус описанной около
окружности.
Рассмотрим
Если угол в прямоугольном треугольнике равен , то напротив лежащий катет равен половине гипотенузы.
Составим уравнение:
Пусть , тогда
.
И по теореме Пифагора
конуса =
см³.
Найдите сумму внутренних и сумму внешних углов, взятых по одному при каждой вершине выпуклого пятиугольника.
- - -
Сумма внутренних углов выпуклого многоугольника вычисляется по формуле -
N = 180°*(n - 2)
Где N - сумма внутренних углов выпуклого многоугольника, n - количество сторон (вершин, углов) выпуклого многоугольника.Для пятиугольника -
N = 180°*(5 - 2) = 180°*3 = 540°.
Сумма внешних углов выпуклого многоугольника всегда равна 360°.
Значит, что и у выпуклого пятиугольника сумма внешних углов равна 360°.
Пусть х - боковая сторона треугольника, тогда возможны 2 варианта:
1) Пусть боковая сторона больше основания, тогда основание равно (х-4) и
х+х+(х-4)=15;
3х=19;
х=6,33333
Сумма равна 12.666...
(стороны 6,3; 6,3; 2,3; неравенство треугольников соблюдается)
2) Пусть основание больше боковой стороны, тогда основание равно (х+4) и
х+х+(х+4)=15;
3х=11
х=3,666
Сумма 7,333
(стороны 3,6; 3,6; 7,6; неравенство треугольников не соблюдается, ответ отпадает)
ответ: 12.666...(12 цел. 2/3)