М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
anna200521
anna200521
24.03.2021 07:52 •  Геометрия

Сторони трикутника відносяться як 3: 7: 8 .а периметр =54см знайдіть найбільшу сторону трикутника

👇
Ответ:
adyoulan
adyoulan
24.03.2021
Пусть х-коэффициент пропорциональности, тогда АВ=3х, АС=7х и СВ=8х
                 Составляем уравнение 
3х+7х+8х=54
18х=54
х=3
СВ=3*8=24
4,4(17 оценок)
Открыть все ответы
Ответ:
elenaveruaskina
elenaveruaskina
24.03.2021

  і ми зустрічалися з різними рівняннями і будували їх графіки.

рівнянням фігури на площині в декартових координатах називається рівняння з двома змінними х і у, яке задовольняють координати будь-якої точки фігури, і навпаки: будь-які два числа, які задовольняють це рівняння, є координатами деякої точки цієї фігури.

яке ж рівняння має коло?

для того щоб скласти рівняння кола, згадаємо його властивість, що міститься в означенні кола: усі точки кола розміщені в одній площині з його центром і однаково від нього віддалені.

нехай центр кола м(а;   b), а радіус кола  r  (рис. 140).

 

 

позначимо на колі будь-яку точку а (х; у). відстань від точки м до точки а дорівнює  r, тобто  am  =  r, але за формулою відстані між двома точками маємо ам2 = (х – а)2 + (y  –  b)2, або  (x  –  a)2 + (y  –  b)2 =  r2. (1)

координати будь-якої точки цього кола задовольняють рівняння (1). правильно і те, що будь-яка точка, координати якої задовольняють рівняння (1), належить колу.

отже,  (x  –  a)2 + (y  –  b)2 =  r2  — рівняння кола. якщо центр кола (рис. 141) лежить у початку координат, то воно має рівняння х2 + у2 =  r2.

 

 

розглянемо рівняння (1), у якому х і у — змінні координати точок кола, а числа а і  b  — відповідно абсциса і ордината центра,  r  — радіус кола. отже, щоб записати рівняння кола, треба запам'ятати цю формулу і знати координати центра і радіус.

наприклад, нехай  m(-1; 2),  a  r  = 2, тоді рівняння кола  (x  +  1)2  +  (y  – 2)2  = 4.

 

виконання вправ

1)  які з точок: а(1; 2), в(3; 4), с(-4; 3),  d(0; 5),  f(5; -1)  —лежать на колі, рівняння якого х2 + у2 = 25? 2)  запишіть рівняння кола радіуса 1, а координати центра:

а) (1; 1);        

б) (-1;   1);      

в) (1; -1);      

г) (-1; -1)

3)  укажіть координати центра і радіус кола, яке задане рівнянням:

a) (x  – 1)2 +  y2  = 9;          

б)  (x  + 1)2  + (у + 3)2 = 1;

в)  x2  + (y  + 1)2 = 2;          

г)  (x  +  1)2  +  (y  + 2)2  =  7.

4)    знайдіть на колі х2 + у2 = 100 точки:

а) з абсцисою 6;  

б) з ординатою 8.

 

iv.  закріплення й усвідомлення нового матеріалурозв'язування

1.    дано точки а(2; 1), в(-2; 5). складіть рівняння кола, діаметром якого є відрізок ав.2.    дано точки а(-1; -1) і с(-4; 3). складіть рівняння кола:

а) з центром у точці а і яке проходить через точку с;

б) з центром у точці с і яке проходить через точку а.

3.    знайдіть на осі ох центр кола, яке проходить через точку а(1; 4) і має радіус 5.4.    складіть рівняння кола з центром (1; 2), яке дотикається до осі ох.5.    складіть рівняння кола з центром (-3; -4), яке проходить через початок координат.6.    доведіть, що відрізок ав, кінці якого а(2; -5) і в(5; -2) є хордою кола (х - 5)2 +(у + 5)2 = 9.7.    чи перетинає коло (х + 4)2 + (у – 1)2 = 20 вісь оу? якщо перетинає, то в яких точках?

 

v. є завдання

вивчити рівняння кола та розв'язати і.

1.    коло задане рівнянням (х – 1)2 + (у + 3)2 =10. чи проходить це коло через початок координат? 2.    чи перетинає коло (х – 3)2 + (у + 5)2 = 26 вісь ох? якщо перетинає, то знайдіть точки перетину з віссю ох.3.    знайдіть рівняння кола, діаметром якого є відрізок ав, якщо а(8; 5), в(2; -3).

 

vi. підбиття підсумків уроку

завдання класу

1.    запишіть рівняння кола.2.    знайдіть координати центра і довжини радіусів кіл, зображених на рис. 142. запишіть рівняння цих кіл.

 

4,8(79 оценок)
Ответ:
katya8631
katya8631
24.03.2021

A1.

Sшестиугольника = \frac{3\sqrt{3} a^2}{2}

ответ: 4

A2.

Правильный четырёхугольник - это квадрат. Так как он вписан в окружность, то диаметр окружности будет равен диагонали квадрата. Диагонали квадрата пересекаются в центре и делят его на 4 одинаковых прямоугольных равнобедренных треугольника с бок. сторонами = R ⇒ S квадрата равна площади четырех треугольников:

S = 4 (\frac{R * R}{2} )= 2 R^2

ответ: 1

A3.

Правильный шестиугольник состоит из 6 равносторонних треугольников, стороны которых равны a, а высоты равны радиусу R. Найдем, чему равны стороны через высоту (радиус):

R = \frac{a\sqrt{3} }{2}

a = \frac{2R}{\sqrt{3}}

Площадь одного треугольника будет равна:

S = \frac{a^2\sqrt{3} }{4}= \frac{4R^2\sqrt{3} }{3*4} = \frac{R^2\sqrt{3}}{3 }

Площадь шестиугольника:

S_w = \frac{6R^2\sqrt{3} }{3} = 2R^2\sqrt{3}

ответ: 2

B1.

Пусть вписанный треугольник - ΔABC, сторона = a; описанный - ΔA₁B₁C₁, сторона - a_1

Для ΔA₁B₁C₁ радиус R = \frac{1}{3} высоты h

h^2 = a^2 - (\frac{1}{2} a)^2 = a^2 - \frac{1}{4} a^2 = \frac{3a^2}{4} \\h = \frac{a\sqrt{3} }{2}

R = \frac{a\sqrt{3} }{2} * \frac{1}{3} = \frac{a\sqrt{3} }{6}

a = \frac{6R}{\sqrt{3} } = \frac{6\sqrt{3}R}{\sqrt{3}*\sqrt{3}} = 2\sqrt{3}R

P = 3a; P_{A_1B_1C_1} = 3 * 2\sqrt{3} R = 6\sqrt{3} R

S = \frac{1}{2} a*h; S_{A_1B_1C_1} = \frac{1}{2} * 2\sqrt{3} R * \frac{2\sqrt{3} R * \sqrt{3} }{2} = \frac{4*3*\sqrt{3} R^2}{4} = 3\sqrt{3} R^2}

Для ΔABC радиус R = \frac{2}{3} высоты h:

R = \frac{a\sqrt{3} }{2} * \frac{2}{3} = \frac{a\sqrt{3} }{3}

a = \frac{R * 3}{\sqrt{3} } = \frac{3R * \sqrt{3} }{\sqrt{3} * \sqrt{3} } = \sqrt{3} R

P_{ABC} = 3\sqrt{3} R\\S_{ABC} = \frac{1}{2} * \sqrt{3} R * \frac{\sqrt{3}R*\sqrt{3}}{2} = \frac{3R^2 * \sqrt{3}}{4}

Найдем соотношение периметров и площадей:

S_{A_1B_1C_1} : S_{ABC} = 3\sqrt{3}R^2 : \frac{3R^2\sqrt{3} }{4} = 4: 1\\P_{A_1B_1C_1} : P_{ABC} = 6\sqrt{3}R : 3\sqrt{3}R = 2 : 1

4,6(89 оценок)
Новые ответы от MOGZ: Геометрия
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ