ответ: 20 см
Решение: смотри рисунок.
Пусть треугольник BAC равнобедренный, AB=AC=10 см.
Возьмем произвольную точку K на основании BC и проведем KM||AC иKN||AB
KM=AN, KN=AM -противоположные стороны параллелограмма.
Докажем, что KM=BM. Угол 2=углу 4 как соответственные углы при AC||KM и секущей KC. Но угол 4=углу 1 (углы при основании равнобедренного треугольника). Отсюда угол 2=углу 1. Значит треугольник BMK равнобедренный и KM=BM как его боковые стороны.
Аналогично докажем, что KN=NC. Угол 3=углу 1 как соответственные углы при AB||KN и секущей KB. Но угол 1=углу 4 (углы при основании равнобедренного треугольника). Отсюда угол3 =углу 4. Значит треугольник KNC равнобедренный и KN=NC как его боковые стороны.
Периметр параллелограмма =KM+MA+AN+NK=BM+MA+AN+NC=BA+AC=10+10=20 (см)
ответ:1. Р=90 см.
2. r=5cм
Объяснение: 1.Пусть точкой касания гипотенуза разбивается на отрезки х и у, х+у= 40, тогда два других катета равны (х+5) и (у+5), т.к.
Если из точки вне окружности провести к ней две касательные, то расстояния от этой точки до точек касания будут равны. Теперь сложим все стороны треугольника.
(х+у)+(х+5)+(у+5) =2*(х+у+5)=2*(40+5)=90/см/- это периметр
2. Воспользуемся опять свойством отрезков касательных, получим, что периметр треугольника состоит из 2х, 2у и 2r'
Если от периметра отнять 2*(х+у), то получим удвоенный радиус. Радиус равен
(98-2*44)/2=10/2=5/см/
AK и KD - биссектрисы
L BAK = L KAD = L A \2 = L 1
L AKB = KAD = L A \2 = L 1
L ADK = L KDC = L D \2 = L 2
Треугольник AKD:
L AKD = 180 - (L AKB + L ADK) = 180 - (L 1 + L 2)
Треугольник KCD:
L DKC = 180 - (L KDC + L C)
L C = L A = 2 * L1
L KDC = L 2
=>
L DKC = 180 - (L 2 + 2 * L 1)
Угол BKD (сумма двух углов) равна:
L BKD = L AKB + L AKD = L 1 + 180 - (L 1 + L 2) = 180 - L 2
Тогда:
L DKC = 180 - L BKD = 180 - (180 - L 2) = L 2
=>
L DKC = L KDC =>
в треугольнике DKC
KC = CD
Но в параллелограмме AB = CD и ранее найдено AB = BK =>
BK = KC =>
точка С - середина ВС