Точка пересечения высот треугольника (или их продолжений) называется ортоцентром треугольника.
В зависимости от вида треугольника ортоцентр может находиться а) внутри треугольника (в остроугольном), в) вне его (в тупоугольном) или с) совпадать с вершиной (в прямоугольном совпадает с вершиной при прямом угле).
Треугольники ВОС и АОД - прямоугольные и равнобедренные, т. к. трапеция равнобедренная. Высота проходящая через точку пересечения диагоналей будет осью симметрии. И делит указанные выше треугольники точно пополам Получившиеся треугольники ОМС и ОМВ - тоже равнобедренные, тк у них один угол = половина ПРЯМОГО УГЛА (пересечение перпендикулярных диагоналей) , а второй угол =90 градусов (т. к. высота) . Поэтому на третий тоже остаётся половина 90 градусов. Т. е. углы при основаниях равны, след-но треугольник равнобедрен. А это значит, что ВМ=МО. Но ВМ = половинка ВС, которая =12, т. е. ВМ=6=МО=6. Так?
Аналогично рассматривает треугольник АОД, который тоже равнобедрен, который тоже высота делит пополам на два равнобедренных, а значит NO=ND=NA=10 А высота всей трапеции = NO+OM=6+10 = 16. А площадь = (ВС+АД) *MN/2
больше половины отрезка. получаем две точки их пересечения. 3. через эти точки проводим прямую до пересечения с первой окружностью. И соединяем эту точку с левой точкой нашей стороны. Это и будет поворот на 60 нашей стороны. 4.берем вторую сторону , измеряем ее длину из одной точки и измеряем расстояние от второго конца нашей первой стороны, которую мы уже повернули до дальнего края второй стороны. 5.от левого конца повернутой стороны строим две окружности измеренных радиусов и в точке их пересечения получаем второй конец второй стороны. 6. И т. д. с каждой стороной.
Точка пересечения высот треугольника (или их продолжений) называется ортоцентром треугольника.
В зависимости от вида треугольника ортоцентр может находиться а) внутри треугольника (в остроугольном), в) вне его (в тупоугольном) или с) совпадать с вершиной (в прямоугольном совпадает с вершиной при прямом угле).