Трапеция АБСД - равнобедренная. Угол А равен 65 градусов. Угол Д равен углу А (т.к. углы при основании равнобедренной трапеции равны) Угол В равен углу С и равен 180-65=115
Проекция наклонной на плоскость - это отрезок один из концов которого есть один из концов наклонной принадлежащий данной плоскости, другой - перпендикуляр, опущенный из второго конца наклонной на данную плоскость. Рассмотрим треугольник, образованный наклонной, ее проекцией и перпендикуляром опущенным из конца наклонной не принадлежащего данной плоскости на эту плоскость. Он прямоугольный. Если катет вдвое меньше гипотенузы, то угол противолежащий катету равен 30 градусов, следовательно угол фи равен 180 - (90+30)=60
Сначала найдем саму функцию вида у=ax^2+bx+с, заменив переменные a, b и c числами. для этого подставляем известные значения х и у: а*0+b*0+с=4, отсюда находим с=4 a*1+b*1+4=-1, отсюда находим а=-5-b (-5-b)*4+b*2+4=-4, отсюда находим b=-6 и подставляя это значение во второе уравнение находим, что a=1 теперь ищем ее вершину: по формуле вершин для парабол: х=-b/2a; y=(b^2-4ac)/4a, отсюда находим х=)/2*1)=3; у=)^2-4*1*4)/(4*1))=-5 альтернативно можно было бы решить через производную, результат бы не изменился. ответ: координатой вершины является точка(3|-5).
Угол В равен углу С и равен 180-65=115