М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
Andreyzem4
Andreyzem4
01.06.2021 15:55 •  Геометрия

Найдите площадь равнобедренного треугольника с боковой стороной 17 см и основанием 30 см

👇
Ответ:
fwooper
fwooper
01.06.2021

решение представлено на фото

Объяснение:


Найдите площадь равнобедренного треугольника с боковой стороной 17 см и основанием 30 см
4,5(56 оценок)
Открыть все ответы
Ответ:
2899101714lp
2899101714lp
01.06.2021

  Высота, проведённая из вершины при основании - это высота к боковой стороне треугольника.

   На произвольной прямой циркулем откладываем отрезок АС,  равный заданной длине основания треугольника.  По общепринятой методике строим срединный перпендикуляр этого отрезка, который пересекает его в т.О. АО=CО.  Из т.А чертим окружность, радиус которой равен заданной длине высоты АН. Основание Н высоты будет расположено на построенной окружности. Т.к.высота должна быть перпендикулярна боковой стороне треугольника, на АВ как на диаметре с центром в т.О чертим окружность. Точку ее пересечения с первой окружностью обозначим Н. Угол АНС=90°, т.к. опирается на диаметр.

     Проводим прямую из т. С через т. Н до пересечения со срединным перпендикуляром в т. В. Соединяем точки А и В. Искомый треугольник АВС с заданным основанием АС и высотой АН из вершины А при основании построен. В нем основание АВ равно заданной длине, треугольники АОВ=ВОС по двум катетам, следовательно, АВ=СВ, отрезок АН перпендикулярен боковой стороне и равен длине заданной высоты.

    В зависимости от длины высоты при равном основании  треугольник может получиться как остроугольным, так и тупоугольным, тогда высота из острого угла при основании пересечётся с продолжением боковой стороны.


Построить равнобедренный треугольник по основанию и высоте, проведённой из вершины при основании.
4,7(38 оценок)
Ответ:
Заяц699
Заяц699
01.06.2021
Все просто - касательная к окружности - это кратчайшее растаяние между точкой вне окружности и точкой на окружности лежащей на прямой, которая не пересекает эту окружность - то есть не делает сечение.
Таким образом, из любой точки вне окружности можно провести два одинаковых отрезка, которые будут касательными. Не больше и не меньше.
Треугольник НМП равнобедренный. Отрезки НО и ПО являются радиусами одной окружности и по этому равны.Поскольку треугольники ОНМ и ОПМ подобны и равны, все их соответственные углы равны.
Тогда углы НМО=ПМО -> МО биссектриса.
Треугольник НМП равнобедренный, а ОМ является его продленной высотой, которая является в таком треугольнике и медианой и биссектрисой. А то, что МО - биссектриса данного угла мы доказали чуть выше. Таким образом НП - основание равнобренного треугольника, которое медиана угла М делит пополам.
НО является высотой треугольника ОНМ, так как это кратчайшее растояние от О до НМ - таким образом высота опущеная к данному основанию НМ из точки О - образует прямой угол. Как и в случае с другой прямой.
4,5(8 оценок)
Это интересно:
Новые ответы от MOGZ: Геометрия
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ