Точка к,удаленная от плоскости треугольника авс на 4см находится на равном расстоянии от его вершин.стороны треугольника равны 12см.вычислите: а)длину проекции отрезка кв на плоскость треугольника; б)расстояние от точки к до вершин треугольника.
По условию в основании находится равносторонний треугольник со стороной 12 см. а) Проекция точки К на плоскость треугольника- это основание высоты КО. Длина проекции отрезка КВ на плоскость треугольника - это 2/3 высоты треугольника (по свойству биссектрис - а в равностороннем треугольнике высоты совпадают с медианами и биссектрисами) - это отрезок ОК. ОК = (2/3)√(12²-(12/2)²) = (2/3)√(144-36) = (2/3)√108 = (2/3)*6√3 = 4√3. б) Расстояние от точки К до вершин треугольника - это гипотенуза в прямоугольных треугольниках, где общий катет - высота Н = 4 см, а другие катеты - это 2/3 каждой высоты треугольника: АК = ВК = СК = √(4² + (4√3)²) = √(16 + 48) = √64 = 8 см.
Если рассмотреть один угол четырехугольника ABD, то центр вписанной в угол окружности будет лежать на биссектрисе угла АО... радиусы окружности, проведенные к сторонам угла в точки касания, _|_ сторонам угла (ОК _|_ AB, ОК1 _|_ AD, OK2 _|_ BC) и в каждом углу четырехугольника получатся по 2 равных прямоугольных треугольника с гипотенузой, лежащей на биссектрисе (треугольник АОК=АОК1, треугольник BОК=BОК2)... если рассмотреть сторону четырехугольника АВ и радиус ОК, проведенный в точку касания, то это будут основание и высота треугольника ВОА, площадь которого равна половине площади фигуры К2ОК1АВ т.е. площади фигуры К2ОК1АВ = 2*(r*AB/2) = r*AB аналогично со стороной CD: площади фигуры К2CDК1 = 2*(r*CD/2) = r*CD площадь ABCD = площадь К2ОК1АВ + площадь К2CDК1 = r*(AB+CD) = 4.5*20 = 90
Если рассмотреть один угол четырехугольника ABD, то центр вписанной в угол окружности будет лежать на биссектрисе угла АО... радиусы окружности, проведенные к сторонам угла в точки касания, _|_ сторонам угла (ОК _|_ AB, ОК1 _|_ AD, OK2 _|_ BC) и в каждом углу четырехугольника получатся по 2 равных прямоугольных треугольника с гипотенузой, лежащей на биссектрисе (треугольник АОК=АОК1, треугольник BОК=BОК2)... если рассмотреть сторону четырехугольника АВ и радиус ОК, проведенный в точку касания, то это будут основание и высота треугольника ВОА, площадь которого равна половине площади фигуры К2ОК1АВ т.е. площади фигуры К2ОК1АВ = 2*(r*AB/2) = r*AB аналогично со стороной CD: площади фигуры К2CDК1 = 2*(r*CD/2) = r*CD площадь ABCD = площадь К2ОК1АВ + площадь К2CDК1 = r*(AB+CD) = 4.5*20 = 90
а) Проекция точки К на плоскость треугольника- это основание высоты КО. Длина проекции отрезка КВ на плоскость треугольника - это 2/3 высоты треугольника (по свойству биссектрис - а в равностороннем треугольнике высоты совпадают с медианами и биссектрисами) - это отрезок ОК.
ОК = (2/3)√(12²-(12/2)²) = (2/3)√(144-36) = (2/3)√108 = (2/3)*6√3 = 4√3.
б) Расстояние от точки К до вершин треугольника - это гипотенуза в прямоугольных треугольниках, где общий катет - высота Н = 4 см, а другие катеты - это 2/3 каждой высоты треугольника:
АК = ВК = СК = √(4² + (4√3)²) = √(16 + 48) = √64 = 8 см.