Так как не известен угол наклона боковой стороны, то проще всего построить треугольник, когда боковая сторона горизонтальна. 1) Проводим горизонтальный отрезок произвольной длины. 2) В любой её точке восстанавливаем перпендикуляр длиной, равной заданной высоте. Это первая вершина треугольника. 3) Из конца высоты раствором циркуля, равным длине боковой стороны, делаем засечку на горизонтальной прямой. Получаем вторую вершину треугольника. 4) Из неё раствором циркуля, равным длине боковой стороны, делаем засечку на горизонтальной прямой и получаем третью вершину треугольника.
Можно скомбинировать графический и аналитический методы построения. Отношение высоты к боковой стороне - это синус угла при вершине. Найти по синусу угол, разделить его пополам. Провести перпендикуляр, от его конца отложить полученное значение половины угла при вершине и провести отрезки в обе стороны от перпендикуляра. На них отложить длины боковых сторон и соединить основание.
Сумма углов выпуклого многоугольника находится по формуле: N=180°• (n – 2), где N - сумма углов, n - их количество ( а, значит, и число сторон многоугольника). Но известно, что сумма внешних углов выпуклого многоугольника равна 360°, причем, с каждым внутренним углом внешний составит в сумме развернутый угол, т.е. 180°. Очевидно, что сумма всех внутренних и внешних углов кратна числу 180°. Тогда число сторон данного выпуклого многоугольника (2160°+360°):180°=14
Теперь вычислим то же число по формуле: 2160°=180°• (n – 2), 2160°=180°•n-360 180°•n=2160°+360°⇒ n=2520°:180°=14 (сторон)
ответ: S=120