1)х+х+х+5=35 3х=30 х=10 ответ:Боковые стороны =10;Основание=15 2)х+х+4х+4х=360 10х=360 х=36 ответ:два угла=36;другие два=144 3)х+2х+2х=40 5х=40 х=8 ответ:боковые стороны=16;основание=8 4)доказательство: 1.Рассмотрим треуг BMD и теуг BKD: 1)BD-общая 2)BM=BK(т.к. М и К -середины боковых сторон,а теуг АВС -равнобедренный) 3)угол MBD=углуDBK(т.к. BD в равнобедренном треуг является медианой,высотой и биссектрисой) Следовательно,треуг BMD=треуг BKD(по первому признаку равенства треугольников) 5)Доказательство: рассмотрим два треугольника: 1)одна сторона будет общая 2)углы при основании равны 3)углы(вверху этого треугольника)будут равны(т.к. Высота будет являтся и биссектрисой) следовательно,треугольники,которые образовала высота,будет равны! 6)не знаю(точнее не уверенна) 7)а)х+4х+4х-90. 9х=270 х=30 ответ:А=30;В=120;С=30 б)эти стороны равны(т.к. Мы узнали,что треугольник равнобедренный)
Площадь правильного шестиугольника, вписанного в окружность, равна сумме площадей шести правильных треугольников со сторонами, равными радиусу этой окружности. Тогда площадь одного треугольника равна D/6. По формуле эта площадь равна (√3/4)*a², где а=R. Следовательно, √3*R²/4=D/6 => R²=2D√3/9. R=√(2D√3)/3 По Пифагору квадрат диагонали вписанного квадрата равен (2R)²=2а², где а - сторона квадрата. а=2R/√2 = R√2, а площадь - S= а² =2R² . Подставим найденное значение R, тогда сторона вписанного квадрата: а=√(2D√3/9)*√2=√(4D√3)/3. площадь вписанного квадрата: S=a²= 4D√3/9.
Если из центра окружности (точки О) опустить перпендикуляр на касательную, то он будет средней линией трапеции и равен полусумме оснований, то есть
(10 + 13) / 2 = 11,5 см.