Природа Аргентины обладает большим разнообразием от высокогорных Анд до обширных равнин, от субтропических лесов до ледников. Разнообразие, которым обладает природа этого государства, обусловлено большой территорией и разнообразным рельефом. Здешние пейзажи, флора и фауна привлекает туристов со всего мира. Аргентинская республика расположена на юго-западе Латинской Америки. На востоке страна омывается водами Атлантического океана. На юге находится остров Огненная Земля. Аргентине принадлежит восточная часть острова. Остров также омывается водами Атлантическим океана (Чилийская часть острова омывается Тихим океаном) а также проливом Дрейка на юге и Многоплановым проливом на севере. Крупнейшая река протекающая в стране - река Парана. Она занимает второе место по протяжности после Амазонки во всей Южной Америке. Река впадает в залив Атлантического океана Ла-Плата. Среди других больших рек: Уругвай, Рио-Негро, Рио-Колорадо. В Аргентине есть такие природные зоны как савана, степь, пустыня, субтропические леса. На севере находится природная зона саван под названием Гран-Чако, в центральной части расположена природная зона степи под названием Пампа, на юге расположена Патагония обширный край степных и пустынных земель. Самое известное чудо природы государства водопад Игуасу это чудо природы находится на границе с Бразилией.
Отметим, что наименьший угол прямоугольной трапеции, это единственный острый угол. (на нашем рисунке это <D). SinD=EP/HD => EP=DH*SinD. SinD=GP/HC => GP=HC*SinD. PH=√(GP*PE), как высота из прямого угла (<GHE=90°, так как опирается на диаметр GE). Тогда PH=SinD√(HD*CH). Но √(HD*CH)=OH - высота из прямого угла в прямоугольном треугольнике СOD c <COD=90° (свойство трапеции: "В трапеции её боковая сторона видна из центра вписанной окружности под углом 90°"). А так как ОН=АВ/2=R, то РН=(АВ/2)*SinD. Площадь четырехугольника EFGH равна сумме площадей треугольников EFG и EHG. Sefg=(1/2)*EG*OF = (1/2)*AB*(1/2)AB=AB²/4. Sehg=(1/2)*EG*PH = (1/2)*AB*(AB/2)*SinD=AB²*SinD/4. Тогда площадь четырехугольника EFGH равна (AB²/4)*(1+SinD). Площадь трапеции равна (1/2)*(BC+AD)*AB. Но поскольку в трапецию вписана окружность, то ВС+АD=АВ+СD (свойство: "В трапецию можно вписать окружность, если сумма длин оснований трапеции равна сумме длин её боковых сторон"). В треугольнике CDK: CK=CD*SinD, но СК=АВ, значит CD=AB/SinD. Тогда Sabcd=(1/2)*(AB+AB/SinD)*AB =AB²*(1+1/sinD)/2. По условию Sabcd=4*Sefgh. или (АВ²*(1+1/sinD)/2=4*(AB²/4)*(1+SinD). Отсюда 1/SinD==2 и SinD=1/2. ответ: острый угол D трапеции равен 30°.