Объяснение:
Проведем от точки A перпендикулярный отрезок к оси Ox и назовем его AK. Аналогично сделаем и с точкой B - назовем отрезок BL.
Рассмотрим ΔOBL:
OB - гипотенуза
OL и BL - катеты
∠BOL = 45°
tg ∠BOL = (противолежащий катет) / (прилежащий катет) = BL/OL
tg 45° = 1
BL/OL = 1
BL = OL
Если посмотреть на рисунок, увидим, что:
OL = c (то есть координата x точки B)
BL = d (то есть координата y точки B)
Так как они равны, обозначим их - a.
В ΔOBL по теореме Пифагора:
OB² = OL² + BL²
OB² = a² + a²
OB = √2a² = a√2
OB = 4√2 (по условию)
a√2 = 4√2
a = 4
a = c = d = 4
Координаты точки B - (4 ; 4).
Теперь рассмотрим ΔAKO:
AO - гипотенуза
AK и OK - катеты
Если посмотрим на рисунок, увидим:
OK = m (то есть координата x точки A)
AK = 3 (то есть координата y точки A)
OA = 5 (по условию)
В ΔAKO по теореме Пифагора:
OA² = AK² + OK²
OK² = OA² - AK²
OK² = 5² - 3²
OK = √(25 - 9)
OK = √16
OK = 4
Но нужно не забыть, что точка A лежит во 2-й четверти, а значит значение x будет с минусом.
m = -4
A(3; -4)
B(4; 4)
По формуле расстояния можем узнать длину отрезка AB:
|AB| = √( (Xa - Xb)² + (Ya - Yb)² )
|AB| = √( (3 - 4)² + (-4 - 4)² )
|AB| = √( (-1)² + (-8)²
|AB| = √(1 + 64) = √65
AB = √65
Вся соль решения в том, что треугольник, образованный диагональю (той, которая биссектриса тупого угла), наклонной боковой стороной и большим основанием - равнобедренный. В самом деле, раз диагональ - биссектриса, то она образует с основаниями такой же угол, как и с боковой стороной. :) (угол между ней и большим основанием - это внутренний накрест лежащий угол к углу между ней же и малым основанием).
Поэтому наклонная боковая сторона равна большому основанию, то есть её длина 17.
Если теперь опустить из вершины тупого угла на большое основание перпендикуляр, то получится прямоугольный треугольник с гипотенузой 17 и одним из катетов 17 - 9 = 8. Отсюда второй катет равен 15 (Пифагоров треугольник 8, 15, 17). А это и есть высота трапеции.
Отсюда площадь трапеции равна
15*(17 + 9)/2 = 15*13 = (упражнение для устного счета: = 14^2 - 1 = 195.