Радиус окружности, описанной около основания, равен √24 = 2√6.
Он равен проекции бокового ребра на основание и в то же время это половина диагонали квадрата в основании пирамиды.
Отсюда находим сторону а основания: а = 2*(2√6)/√2 = 4√3.
Так как угол наклона бокового ребра к плоскости основания равен 45 градусам, то находим его длину L.
L = 2√6/cos 45° = 2√6/(√2/2) = 4√3.
Теперь можно получить ответ - высота боковой грани пирамиды равна (это апофема А):
А = √(L² - (a/2)²) = √(4√3)² - (4√3/2)²) = √(48 - 12) = √36 = 6.
Высота, проведенная к основанию равнобедренного треугольника равна квадрату стороны деленная на 2радиуса описанной окружности: h=a^2/2R. Из этой формулы найдем длину стороны АВ треугольника АВС: a^2=2Rh=2*10*16 => a=корень из 320.
Чтобы найти площадь треугольника найдем длину половины основания, а затем и все основание (т к высота в равнобоком треугольнике это и медиана) по теореме пифагора (из прямоугольного треугольника АВЕ) АЕ=корень из 320-16^2=корень из 64=8см, тогда АС=8+8=16см.
Найдем площадь треугольника АВС=1/2*h*a; где h-высота, a-сторона, к которой проведена высота.
S=1/2*16*16=128cм^2
2)развернутый
3)тупой
4)острый
5)тупой
Если отметь как лучший