Дан равнобедренный треугольник авс с основанием ас.на сторонах ав,вс,ас отмечены точки д,е,р соответственно так что отрезки ае и др имеют общую середину. докажите,что угол дер равен углу вса. огромнейшее
Если отрезки АЕ и ДР имеют общую середину, например точку О, то отрезки ДО=ОР и ОЕ=ОА.
Треугольники ДОЕ и АОР-равны по двум сторонам и углу между ними (ДО=ОР, АО=ОЕ- по условию, углы ДОЕ и АОР- равны как вертикальные), значит угол ДЕО=углу ОАР.
Треугольники АДО и ЕОР тоже равны по двум сторонам и углу между ними (ДО=ОР, АО=ОЕ - по условию, углы АОД и ЕОР равны как ветикальные), значит угол ДАО= углу РЕО.
из этого следует, что угол ДЕР= углу ДАР.
по условию треугольник равнобедренный, значит по свойству равнобедренного треугольника углы при основании равны, т.е. угол ВАС= углу ВСА, т.к. угол ДЕР = углу ДАР (ВАС), значит он равен и углу ВСА. что и требовалось доказать.
Номер 1 Рассмотрим треугольник AOC и треугольник BOD: угол AOC равен углу BOD(как вертикальные) AO=OB и CO=OD(по условию,т.к. точка серединой является O) значит треугольник AOC равен треугольнику BOD(по двум сторонам и углу между ними) значит угол DAO равен углу CBO(в равных треугольниках против равных сторон лежат равные углы)
номер 2: Рассмотрим треугольник ABD и треугольник ADC: по условию угол BDA равен углу ADC сторона AD-общая и по условию угол BAD=углу DAC(т.к. AD биссектриса) Значит треугольник ABD равен треугольнику ADC(по двум углам и стороне между ними) значит сторона AB=AC(т.к. в равных треугольниках против равных углов лежат равны стороны)
Если отрезки АЕ и ДР имеют общую середину, например точку О, то отрезки ДО=ОР и ОЕ=ОА.
Треугольники ДОЕ и АОР-равны по двум сторонам и углу между ними (ДО=ОР, АО=ОЕ- по условию, углы ДОЕ и АОР- равны как вертикальные), значит угол ДЕО=углу ОАР.
Треугольники АДО и ЕОР тоже равны по двум сторонам и углу между ними (ДО=ОР, АО=ОЕ - по условию, углы АОД и ЕОР равны как ветикальные), значит угол ДАО= углу РЕО.
из этого следует, что угол ДЕР= углу ДАР.
по условию треугольник равнобедренный, значит по свойству равнобедренного треугольника углы при основании равны, т.е. угол ВАС= углу ВСА, т.к. угол ДЕР = углу ДАР (ВАС), значит он равен и углу ВСА. что и требовалось доказать.