Вравнобедренной трапеции авсд, ад параллельно вс, угол а=30 градусов, высота вк=1см, вс=2корень из 3. найдите площадь треугольника кмд, если м -середина вд
ΔАВК: ∠К = 90°, ∠А = 30°, ⇒ АВ = 2ВК = 2 см по теореме Пифагора АК = √(АВ² - ВК²) = √(4 - 1) = √3 см Проведем высоту СН. СН = ВК как высоты одной трапеции, СН ║ ВК как перпендикуляры к одной прямой, значит, КВСН - прямоугольник. КН = ВС = 2√3 см
ΔАВК = ΔDCH по гипотенузе и катету (AB = CD так трапеция равнобедренная и СН = ВК), значит AK = HD = 2√3 см KD = KH + HD = 3√3 см Проведем МР⊥AD. МР - средняя линия треугольника KBD, МР = ВК/2 = 0,5 см
Дано: DABC - правильная пирамида - AB=BC=AC; DO = 18 см ∠DAO = 45° Найти: S₀ -?
Высота правильной пирамиды опускается в центр вписанной/описанной окружности ⇒ OA = OB = OC = R - радиус окружности, описанной около ΔABC ΔAOD - прямоугольный: ∠AOD = 90°; ∠DAO = 45°; DO = 18 см ⇒ ∠ADO = 90° - ∠DAO = 90° - 45° = 45° = ∠DAO ⇒ ΔAOD - прямоугольный равнобедренный ⇒ AO = DO = 18 см - радиус описанной окружности R ⇒ AB = BC = AC = a = R√3 = 18√3 см
Площадь равностороннего треугольника см² Площадь основания 243√3 см² ≈ 420,9 см²
Теорема d3. В равнобедренном треугольнике высоты, опущенные к боковым сторонам, равны. Доказательство: Пусть ABC - равнобедренный треугольник (AC = BC), AK и BL - его высоты. Тогда углы ABL и KAB равны, так как углы ALB и AKB прямые, а углы LAB и ABK равны как углы при основании равнобедренного треугольника. Следовательно, треугольники ALB и AKB равны по второму признаку равенства треугольников: у них общая сторона AB, углы KAB и LBA равны по вышесказанному, а углы LAB и KBA равны как углы при основании равнобедренного треугольника. Если треугольники равны, их стороны AK и BL тоже равны. Что и требовалось доказать
по теореме Пифагора АК = √(АВ² - ВК²) = √(4 - 1) = √3 см
Проведем высоту СН.
СН = ВК как высоты одной трапеции, СН ║ ВК как перпендикуляры к одной прямой, значит, КВСН - прямоугольник.
КН = ВС = 2√3 см
ΔАВК = ΔDCH по гипотенузе и катету (AB = CD так трапеция равнобедренная и СН = ВК), значит
AK = HD = 2√3 см
KD = KH + HD = 3√3 см
Проведем МР⊥AD. МР - средняя линия треугольника KBD,
МР = ВК/2 = 0,5 см
Skmd = 1/2 · KD · MP = 0,5 · 3√3 · 0,5 = 3√3/4 см²