М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
тошкк
тошкк
19.04.2020 17:19 •  Геометрия

Вравнобедренной трапеции авсд, ад параллельно вс, угол а=30 градусов, высота вк=1см, вс=2корень из 3. найдите площадь треугольника кмд, если м -середина вд

👇
Ответ:
silamiaso1
silamiaso1
19.04.2020
ΔАВК: ∠К = 90°, ∠А = 30°, ⇒ АВ = 2ВК = 2 см
             по теореме Пифагора АК = √(АВ² - ВК²) = √(4 - 1) = √3 см
Проведем высоту СН.
СН = ВК как высоты одной трапеции, СН ║ ВК как перпендикуляры к одной прямой, значит, КВСН - прямоугольник.
КН = ВС = 2√3 см

ΔАВК = ΔDCH по гипотенузе и катету (AB = CD так трапеция равнобедренная и СН = ВК), значит
AK = HD = 2√3 см
KD = KH + HD = 3√3 см
Проведем МР⊥AD. МР - средняя линия треугольника KBD,
МР = ВК/2 = 0,5 см

Skmd = 1/2 · KD · MP = 0,5 · 3√3 · 0,5 = 3√3/4 см²

Вравнобедренной трапеции авсд, ад параллельно вс, угол а=30 градусов, высота вк=1см, вс=2корень из 3
4,8(99 оценок)
Открыть все ответы
Ответ:
anitakuznetsova
anitakuznetsova
19.04.2020
Дано: DABC - правильная пирамида - AB=BC=AC; DO = 18 см
∠DAO = 45°
Найти: S₀ -?

Высота правильной пирамиды опускается в центр вписанной/описанной окружности ⇒
OA = OB = OC = R  - радиус окружности, описанной около ΔABC
ΔAOD - прямоугольный: ∠AOD = 90°; ∠DAO = 45°; DO = 18 см  ⇒
∠ADO = 90° - ∠DAO = 90° - 45° = 45° = ∠DAO  ⇒
ΔAOD - прямоугольный равнобедренный ⇒ 
AO = DO = 18 см - радиус описанной окружности  R ⇒
AB = BC  = AC = a = R√3 = 18√3 см

Площадь равностороннего треугольника
S_o= \frac{a^2 \sqrt{3} }{4} = \frac{(18 \sqrt{3} )^2 \sqrt{3} }{4} = \frac{324*3 \sqrt{3} }{4} =243 \sqrt{3} см²
Площадь основания   243√3 см² ≈ 420,9 см²
Решите с дано и с объяснениями: 3.в правильной треугольной пирамиде боковое ребро с плоскостью основ
4,8(6 оценок)
Ответ:
Теорема d3. В равнобедренном треугольнике высоты, опущенные к боковым сторонам, равны.
Доказательство: Пусть ABC - равнобедренный треугольник (AC = BC), AK и BL - его высоты. Тогда углы ABL и KAB равны, так как углы ALB и AKB прямые, а углы LAB и ABK равны как углы при основании равнобедренного треугольника. Следовательно, треугольники ALB и AKB равны по второму признаку равенства треугольников: у них общая сторона AB, углы KAB и LBA равны по вышесказанному, а углы LAB и KBA равны как углы при основании равнобедренного треугольника. Если треугольники равны, их стороны AK и BL тоже равны. Что и требовалось доказать
4,4(12 оценок)
Это интересно:
Новые ответы от MOGZ: Геометрия
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ