Периметр параллелограмма равен 360, а его острый угол равен 60°. найдите стороны параллелограмма, если известно, что его меньшая диагональ делит его углы в отношении 3: 1
Рассмотрим треугольник АВТ. Угол ТАВ = 30 град. Катет, лежащий против угла 30 град., равен половине гипотенузы, т.е.ВТ = АМ = МВ. Отсюда треуголник МВТ равнобедренный. Поскольку углы при основании равны, а угол АВТ = 60 град, то и угол ВТМ = углу ТМВ = 120 : 2 = 60 град. Значит треуголник МВТ равносторонний. В треуголнике АВС углы при основании равны. Тогда в теуголнике ВСТ угол ТВС = 90 - 30 = 60 град. Треугольники МВТ и NВТ равны, поскольку МВ=ВN, ВТ - общая и углы МВТ и NВТ = 60 град. А значит оба треугольники равносторонние. Отсюда TM + TN = AB = BC
Пусть стороны АВ и ВС треугольника соответственно равны 1 и √15 а его медиана ВМ равна 2.На продолжении медианы BM за точку M отложим отрезок MD, равный BM. Из равенства треугольников ABM и CDM (по двум сторонам и углу между ними) следует равенство площадей треугольников ABC и BCD. В треугольнике BCD известно, что ВС=√15; ВD=2ВМ = 2*2=4 ; DС=АВ=1 по формуле герона р=(√15+4+1)/2=(√15+5)/2 s=√(p(p-BC)(p-BD)(p-DC))=√((√15+5)/2)((√15+5)/2-√15)((√15+5)/2-4)((√15+5)/2-1)= √((√15+5)/2)((-√15+5)/2)((√15-3)/2)((√15+3)/2)=√(((√15+5)(5-√15)(√15-3)(√15+3))/16) =√(((25-15)(15-9))/16)=√60/√16=2√15/4 2*3.87/4=1.94
Так как в параллелограмме противоположные углы равны, а сумма внутренних углов равна 360°, то вторая пара углов:
(360 - 2·60) : 2 = 120°
Так как меньшая диагональ делит бо'льшие углы параллелограмма, то:
х + 3х = 120
х = 30° 3х = 90°
Таким образом, параллелограмм состоит из двух прямоугольных треугольников с общим катетом, в качестве меньшей диагонали.
Так как меньший угол треугольника 30°, то катет, лежащий напротив этого угла равен половине гипотенузы. Обозначим их: х и 2х, соответственно.
Тогда, учитывая, что периметр параллелограмма равен 360 (ед.):
2х + 4х = 360
х = 60 (ед.) 2х = 120 (ед.)
ответ: 60 ед.; 60 ед.; 120 ед.; 120 ед.