Угол между плоскостью основания и противолежащей вершиной другого основания - это угол ОКС. Поскольку все ребра перпендикулярны основаниям, то треугольник КОС - прямоугольный с прямым углом С. И поскольку угол ОКС = 30 градусов, то катет ОС равен половине гипотенузы ОК как катет, что лежит против угла 30 градусов. ОК = 2СО = 6*2 = 12 см. Из теоремы Пифагора: CK^2 = OK^2 - OC^2, CK^2 = 12^2 - 6^2 = 144 - 36 = 108, CK = 6 корней из 6. Из правильного треугольника АВС: высота СК = 6 корней из 3, которая является также и медианой, поэтому АК = КВ = СВ/2. Из прямоугольного треугольника СКВ: угол СВК = 60 градусов как угол правильного треугольника. По теореме синусов: СК/sin(CBK) = CB/sin(CKB), CB = 12. Площадь треугольника равна 36 корней из 3 см^2. Объем призмы равен площади основания, умноженного на высоту: V = So*H = S(ABC)*OC = 108 корней из 3 см^3.
Рисуем циркулем произвольную окружность удобного размера ( циркуль не сводим - бережем отмеренный радиус).Проводим линейкой отрезок через центр окружности О - это будущая биссектриса треугольника( она же высота и медиана, поскольку треугольник равнобедренный) Ставим иглу циркуля снова в центр окружности, отмечаем на окружности карандашом точку А на расстоянии R (радиус). Измеряем циркулем расстояние от точки А до отрезка - биссектрисы и высоты треугольника, ставим точку Д, откладываем это же расстояние до окружности ставим точку В.Соединяем точки А, Д и В прямой - это основание равнобедренного треугольника. Стороны могут быть радиусы - треугольник АОВ или ставим точку С и соединяем с точками А и В - треугольник АСВ.