Мы знаем, что сумма двух углов паралелограма, прилегающих к одной стороне, равна 180 градусов, тогда угол А+В=180.
В=180-60=120. Из отношения 3:1 видим, что угол В состоит из 4-х частей (3+1=4), тогда одна часть, а это уго CBD=120/4=30. Угол ABD=30*3=90. В треуг. ABD угол А=60, В=90, тогда D=30. Напротив угла в 30 градусов лежит катет вдвое меньше гипотенузы, значит AD=2AB. АВ+AD=P/2=60/2=30см.
Доказывается, я так думаю, через равенство двух треугольников. Каждый треугольник образован основанием, наклонной стороной (бедром трапеции) и диагональю. Поскольку углы при основании равны - на то трапеция и равнобедренная, бёдра тоже тоже, а основание у треугольников - общая сторона, то треугольники равны (так как равны две стороны и угол между ними) . А если треугольники равны, то равны и их соответствующие третьи стороны - т. е. диагонали. Вот теперь посторой трапецию АВСД и запиши всё в мат. выражениях.
Угол ВМО - линейный угол двугранного угла, образованного плоскостью треугольника с данной плоскостью α. ВМ и МN перпендикулярны АС, значит плоскость ANC (плоскость α) перпендикулярна плоскости BMN. Углы между наклонными (две другие стороны треугольника) и плоскостью - это углы между этими наклонными и их проекциями на эту плоскость. Перпендикуляр ВО к плоскости α лежит в плоскости BMN (О на прямой MN). Надо найти синусы углов ВСО и ВАО. Прямоугольные треугольники ВАО и ВСО равны по гипотенузе и катету. Углы ВСО и ВАО равны. Из прямоугольного треугольника ВМО : , sinВСО = sin ВАО = ответ
ABCD-паралелограм. BD-диагональ. Угол А=60. Р=60см.
Мы знаем, что сумма двух углов паралелограма, прилегающих к одной стороне, равна 180 градусов, тогда угол А+В=180.
В=180-60=120. Из отношения 3:1 видим, что угол В состоит из 4-х частей (3+1=4), тогда одна часть, а это уго CBD=120/4=30. Угол ABD=30*3=90. В треуг. ABD угол А=60, В=90, тогда D=30. Напротив угла в 30 градусов лежит катет вдвое меньше гипотенузы, значит AD=2AB. АВ+AD=P/2=60/2=30см.
АВ+2АВ=30см
3АВ=30
АВ=10см
AD=2AB=10*2=20см
ответ: большая сторона AD=20см