Радиус описанной вокруг треугольника окружности вычисляется по формуле R=1/2*а/[email protected], где а - противоположная углу @ сторона/. В данном треугольнике сторона АС, равная 7-ми, также противоположна углу ABC. ОТсюда следует, что R=1/2*7/sin30; R=1/2*7/1/2=7. ответ 7
1-Ло́маная (ломаная линия) — геометрическаяфигура, состоящая из отрезков, последовательно соединенных своими концами.
2-Ломаная — геометрическая фигура, состоящая из отрезков, последовательно соединенных своими концами. Замкнутую плоскую ломаную называют многоугольником. Вершина - вершина угла, точка пересечения двух сторон. Сторона - отрезок, соединяющий две его соседние вершины. Диагональ - линия, проведенная из одного угла в другой. Периметр - сумма длин всех сторон.
3-ыпуклым многоугольником называется многоугольник, обладающий тем свойством, что все его точки лежат по одну сторону от любой прямой, проходящей через две его соседние вершины. Это углы, образованные сторонами выпуклого многоугольника.
4-Сумма углов треугольника - 180 градусов.
Докажем, что сумма углов выпуклого n-угольника равна 180(n-2) градусам. Выберем одну из вершин и проведём из неё n-2 диагонали. Они разделят n-угольник на n-2 треугольника. Сумма углов каждого треугольника равна 180 градусам, сумма углов n-угольника равна сумме углов всех треугольников. Значит, сумма углов выпуклого n-угольника - 180(n-2) градусов, что и требовалось доказать.
Не любая , а биссектриса к основанию ( а не к боковой стороне) совпадает с высотой и медианой. Извините, не прочитал, что в равностороннем. Для равнобедренного рассуждение такое: Это вытекает из того, что биссектриса делит треугольник на два равных ( по первому признаку, т.е. по двум сторонам и углу между ними). В этих треугольниках напротив равных углов -равные стороны: отрезки на которые биссектриса делит основание. Значит она медиана. Два угла с вершиной на середине основания тоже равны. А так как они смежные т их сумма равна 180 градусам, то и они равны 90 градусам. Значит биссектриса совпадает с высотой В равностороннем - то же рассуждение для любой стороны. .