211) Найдем гипотенузу треуг х²=40²+42² х²=1600+1764=3364 х=58, по теореме синусов а/sinα=в/sinβ=с/sinω=2R, где а, в, с, с-стороны треуг, α,β,ω-углы соответственно противолежащие этим сторонам, R-радиу описанной окружности. Мы незнаем углы лежащие напротив сторон 40 и 42, но знаем, что есть прямой угол и гопотенузу, тогда из этой теоремы пусть а-гипотенуза, тогда α=90-прямой угол, а/sinα=2R 58/sin90=2R 58/1=2R R=58/2=29см. 2) Равносторонний треугольник-все стороны и углы равны, пусть а-сторона треуг, тогда а=(6√3)/3=2√3, α-углы треуг=180/3=α=60, тогда по теореме синусов а/sinα=2R (2√3)/sin60=2R=(2√3)/(√3/2)=4 R=4/2=2 3) r=√(((р-а)(р-в)(р-с))/р), где r-радиус вписанной окружности, р-полупериметр треуг р=(а+в+с)/2, а, в, с-стороны треуг. р=(13+14+15)/2=21 r=√(((21-13)(21-14)(21-15))/21)=√((8*7*6)/21)=√336/21=√16=4
У равнобедренного Δ две стороны равны. 234 - 104 = 130 - это сумма двух равных сторон 130 : 2 = 65 - это одна из равных сторон. Из вершины Δ, противолежащей основанию, опустим высоту на основание Получим 2 равных прямоугольных треугольника. Рассмотрим один из них. Высота в равнобедренном Δ является медианой, поэтому высота разделит основание пополам 104 : 2 = 52 - это катет рассматриваемого прямоугольного Δ. Гипотенуза = боковой стороне = 65 По теореме Пифагора определим другой катет рассматриваемого прямоугольного Δ Катет = √(65^2 - 52^2) = 39 - это высота равнобедренного Δ S равнобедренного Δ = 1/2 *39 * 104 = 2028 (кв.ед.) ответ: 2028 кв.ед - площадь равнобедренного Δ.
ответ: 45 см³
Объяснение:
Формула для нахождения объема цилиндра:
V = πR²H,
где R - радиус основания,
Н - высота, или образующая цилиндра.
V = 20 см³.
Пусть R₁, H₁ и V₁ - соответственно радиус основания, высота и объем получившегося цилиндра.
R₁ = 3R
H₁ = H/4