проекции перпендикулярны, тогда по т Пифагора расстояние между точками пересечения наклонными плоскости равно sqrt{18}, так как угол между наклонными равен 60, наклонные равны (так как проекции равны), то наклонные и линия, соединяющая точки пересечения с плоскостью образуют правильный тр-к => гипотенуза прямоуг тр-ка, образованного одной наклонной, перпендикуляром, опущенным из данной точки на плоскость и проекцией этой наклонной, равна sqrt{18}. По т Пифагора, перпендикуляр равен sqrt{18-9} = 3
Диагонали квадрата пересекаются наоси цилиндра в точке О.
Через точку О проведём отрезок РЕ║АД1. ∠О2ОЕ=α. Сторона квадрата равна а. АЕ=ЕВ=а/2.
Построим плоскость перпендикулярно оси О1О2, проходящую через сторону АВ. Проекция квадрата АВС1Д1 на эту плоскость будет прямоугольник АВСД.
Диагонали прямоугольника АВСД пересекаются на оси цилиндра в точке М. Половина диагонали этого прямоугольника и есть радиус цилиндра. АМ=R.
В тр-ке ЕОМ ЕМ=ОЕ·sinα=a·sinα/2 (ОЕ=РЕ/2=а/2).
В тр-ке АМЕ АМ²=АЕ²+ЕМ²=(а²/4)+(а²sin²α/4)=2a²sin²α/4.
AM=a√2·sinα/2
ответ: радиус цилиндра