P(DKC) = CD + CK + DK P(DKE) = DE + KE + DK как видно, и в том, и в другом периметре фигурирует сторона DK, а CK = KE = DK. Найдем сторону DK. Диагональ СЕ делит прямоугольник на два треугольника. Периметр треугольника CDE = периметру треугольника CEF = половине периметра прямоугольника CDEF = 28/2 = 14 cм. В свою очередь, периметр CDE равен также сумме периметров DKC и DKE минус 4DK, т.е 14 = 16 + 18 - 4DK 4DK = 16 + 18 - 14 DK = 5 см Диагонали, при пересечении друг с другом, делятся пополам и образуют равнобедренные треугольники, значит DK = CK = КЕ = КF = 5 см. Теперь находим стороны прямоугольника. DС = ЕF = 16 - 5 - 5 = 6 см DE = CF = 18 - 5 - 5 = 8 см Проверка: Р(CDEF) = (6 + 8) * 2 = 28 см
Основание правильной четырёхугольной пирамиды — квадрат, а боковые грани — равные равнобедренные треугольники. Пирамида SАВСД: основание АВСД (АВ=ВС=СД=АД=12). Вершина пирамиды S проектируется в точку О пересечения диагоналей основания (квадрата) АС и ВД, т.е. SO - это высота пирамиды. Проведем апофему пирамиды SK - это высота боковой грани. Двугранный угол SKО равен 30°. Из прямоугольного ΔSKО найдем SK (KO=АВ/2=12/2=6): SK=ОК/cos 30=6 / √3/2=12/√3=4√3 Площадь основания Sосн=АВ²=12²=144 Периметр основания Р=4АВ=4*12=48 Площадь боковой поверхности Sбок=P*SK/2=48*4√3/2=96√3≈166,28 Площадь полной поверхности Sполн=Sбок+Sосн=96√3+144≈310,28
АВСD-прямоугольник. Из угла А проведем биссектрису и она пересечется с диагональю BD в точке О. ВО=15см, DO=20см, тогда BD=20+15=35см.
Пусть АВ=х, тогда AD=√(BD^2-x^2)=√(1225-x^2)
По свойству биссектрисы BO/OD=AB/AD
15/20=x/√(1225-x^2)
3/4=x/√(1225-x^2)
9/16=x^2/(1225-x^2)
16x^2=9*(1225-x^2)
16x^2=11025-9x^2
25x^2=11025
x^2=441
x=21см
АВ=21см
AD=√(1225-441)=√784=28см
S=AB*AD=21*28=588см^2