Составить уравнение высоты, проведенной из вершины С.
Высота СД - это перпендикуляр к прямой АВ.
Составим уравнение прямой АВ.
Вектор АВ = (5-(-7); -3-2) = (12; -5).
Уравнение АВ:
(x + 7)/12 = (y – 2)/(-5) в каноническом виде или
5х + 12у + 11 = 0 в общем виде.
Перпендикулярная прямая в общем виде Ах + Ву + С = 0 имеет коэффициенты по сравнению с АВ, равные В и -А (это из условия, что их скалярное произведение равно нулю): 12х - 5у + С = 0.
Для определения слагаемого С подставим координаты точки С:
Так как по условию xm+yn=5n, тоxm =(5-y)n если x не равно 0, то разделив левую и правую части уравнения на x, получим m =((5-y)/x) n, где ((5-y)/x) какое-то число.
По условию коллинеарности:Два вектора a и b коллинеарны, если существует число не равное нулю n такое, что a = n · b Следовательно, если a и b не коллинеарны то такого числа не существует. А в нашем примере такое число есть (при x не равном 0). Следовательно если x не равно 0, то векторы коллинеарны. А так как по условию они не коллинеарны, то x = 0. Тогда и y = 0. ответ: x = 0 и y = 0
Даны вершины А(-7;2) B(5;-3) C(8:1) треугольника АBC.
Составить уравнение высоты, проведенной из вершины С.
Высота СД - это перпендикуляр к прямой АВ.
Составим уравнение прямой АВ.
Вектор АВ = (5-(-7); -3-2) = (12; -5).
Уравнение АВ:
(x + 7)/12 = (y – 2)/(-5) в каноническом виде или
5х + 12у + 11 = 0 в общем виде.
Перпендикулярная прямая в общем виде Ах + Ву + С = 0 имеет коэффициенты по сравнению с АВ, равные В и -А (это из условия, что их скалярное произведение равно нулю): 12х - 5у + С = 0.
Для определения слагаемого С подставим координаты точки С:
12*8 - 5*1 + С = 0, отсюда С = -96 + 5 = -91.
Получаем уравнение общего вида:
СD = 12х - 5у - 91 = 0.