|AB|=12 |BD|=√(12²+12²)=12√2 Если отложить вектора от одной точки,то угол между ними составляет:∠α=180-45=135° AB*BD=|AB|*|BD|*cosα=12*12√2*(-√2/2)=-144
Точка равноудалена от сторон прямоугольного треугольника, => эта точка проектируется в центр вписанной в треугольник окружности. радиус вписанной в треугольник окружности: r=(a+b-c)/2 1. по теореме Пифагора: c²=a²+b². a=9 см, b=12 см c²=9²+12². c=15 см r=(9+12-15)/2. r=3 см
2. прямоугольный треугольник: катет - расстояние от точки до плоскости треугольника, а=4 см катет - радиус вписанной в треугольник окружности, b=3 см гипотенуза - расстояние от точки до сторон треугольника, с. найти c²=3²+4² c=5 ответ: расстояние от точки до сторон прямоугольного треугольника 5 см
1)Площадь прямоугольного треугольника равна половине произведения катетов треугольника: S = 1/2ab =24
2)Гипотенуза — самая длинная сторона прямоугольного треугольника, противоположная прямому углу. Длина гипотенузы прямоугольного треугольника может быть найдена с теоремы Пифагора: квадрат длины гипотенузы равен сумме квадратов длин катетов.
если длина одного из катетов равна 6cм (квадрат его длины равен 36 м²), а длина другого — 8cм (квадрат его длины равен 64), то сумма их квадратов равна 100cм². Длина гипотенузы в этом случае равна квадратному корню из 100cм², то есть 10cм.
|BD|=√(12²+12²)=12√2
Если отложить вектора от одной точки,то угол между ними составляет:∠α=180-45=135°
AB*BD=|AB|*|BD|*cosα=12*12√2*(-√2/2)=-144