1).Параллелограмм — это такой четырехугольник, у которого противоположные стороны являются попарно параллельными.
Признаки параллелограмма
Параллелограммом является такой четырехугольник, у которого две стороны равны и параллельны.
Параллелограмм это четырехугольник с равными и параллельными напротив сторонами
AB = CDAB=CD; AB || CD \Rightarrow ABCDAB∣∣CD⇒ABCD — параллелограмм.
Доказательство
2. Параллелограммом является такой четырехугольник, у которого противоположные стороны равны.
Параллелограмм с равными противоположными сторонами
AB = CDAB=CD, AD = BC \Rightarrow ABCDAD=BC⇒ABCD — параллелограмм.
Доказательство
3. Параллелограммом является такой четырехугольник, у которого противоположные углы равны.
Параллелограмм с равными противоположными углами
\angle A = \angle C∠A=∠C, \angle B = \angle D \Rightarrow ABCD∠B=∠D⇒ABCD — параллелограмм.
Доказательство
4. Параллелограммом является такой четырехугольник, у которого диагонали разделены точкой пересечения пополам.
Параллелограмм с диагоналями, разделенными точкой пересечения
AO = OCAO=OC; BO = OD \RightarrowBO=OD⇒ параллелограмм.
Доказательство
КЕ - диаметр, значит дуга КРЕ=180°. Дуга КРЕ - это сумма дуг КР и РЕ, причем дуга РЕ=0,8*КР (дано). Тогда КР+РЕ=1,8*КР=180°. Отсюда КР=100°, а РЕ=80°. Вписанный угол КЕМ равен половине градусной меры дуги МК, на которую он опирается, то есть <KЕM=13°. Вписанный угол ЕМР, опирающийся на дугу РЕ, равен 40°. Тогда в треугольнике НМЕ (Н - точка пересечения хорды и диаметра), угол МНЕ (искомый угол) равен 180°-13°-40°=127°.
ответ: 127°