Значит так. Чертим прямоугольный треугольник. Решение: Рассмотрим треугольник ACH: Так как CH - высота,то этот треугольник прямоугольный. Следовательно CH - катет и мы находим его по теореме Пифагора: CH = √6^²-4^² = √36-16 = √20 = 2√5 Я предлагаю рассмотреть треугольник ABC и найти x через CB(не знаю можно ли так,как я решил,но я запишу) AB=4+x CB=√AB²-AC² = √(4-x)²-6² = √x²-10x-20 Разбираем квадратичное уравнение: x²-10x-20=0 D= 100+4*20=180 √D= 6√5 x_{12} = 5+-3√5 x2 - не подходит,так как получается отрицательным,поэтому BH = 5+3√5. ответ: 5+3√5
Центр окружности лежит на биссектрисе угла. Радиусы окружности, проходящие через точки касания сторон угла с окружностью, будет перпендикулярны к сторонам угла. Таким образом, биссектриса, касательные (стороны угла от вершины до точек касания с окружностью) и радиусы образуют два одинаковых прямоугольных треугольника. И при любом положении угла относительно окружности (при вращении угла вокруг окружности) все размеры этих треугольников будут оставаться неизменными. Следовательно вершина угла опишет окружность , центр которой совпадет с центром заданной окружности, и радиусом равным расстоянию от вершины угла до центра окружности.