Рівнобедрений трикутник із бічною стороною а і кутом "альфа" при вершині обертається навколо прямої, що містить основу. Знайбіть об'єм утвореного тіла обертання
Дано : AB =AC = a ; ∠BAC = α
V - ?
Два Конуса
V =2*V₁ = 2*(1/3)S*H
S = π*R²=π*(AO)² = π*(acos( α /2) ) ² = π*a²cos²( α /2) || R = AO ||
H =BO =AB*sin (∠BAO) =asin (α /2)
V = 2*(1/3)S*H = (1/3)π*a²2cos²( α /2)*asin (α /2) =
Окружность = 360° 1) 5+4 =9 столько частей в этих 360° Меньшая дуга 360:9*4=40°*4=160° Градусная величина этой дуги соответствует величине центрального угла ( на рисунке 1 это угол АОВ). Вписанный угол АСВ равен половине центрального угла. 160°:2=80° - под этим углом видна хорда из любой точки на дуге АСВ Если точку взять на дуге по другую сторону хорды, то угол, под которым она будет видна, равен 360°:9*5:2=100°. Но обычно имеется в виду острый угол. ------------ 2) 7+3=10 столько частей в двух дугах. 360°:10*3=108° содержит центральный угол КОМ ( второй рисунок) Вписанный угол МЕК равен половине градусной меры центрального угла. 108°:2=54° - под этим углом видна вторая хорда. (Или, если точка расположена по другую сторону хорды, 360:10*7:2=126°)
Рівнобедрений трикутник із бічною стороною а і кутом "альфа" при вершині обертається навколо прямої, що містить основу. Знайбіть об'єм утвореного тіла обертання
Дано : AB =AC = a ; ∠BAC = α
V - ?
Два Конуса
V =2*V₁ = 2*(1/3)S*H
S = π*R²=π*(AO)² = π*(acos( α /2) ) ² = π*a²cos²( α /2) || R = AO ||
H =BO =AB*sin (∠BAO) =asin (α /2)
V = 2*(1/3)S*H = (1/3)π*a²2cos²( α /2)*asin (α /2) =
= (1/3)π* a²*2cos²(α/2) ) *asin(α/2)= (1/3)πsinα*cos(α/2) a³ .
* * * 2sin(α/2)*cos(α/2) = sin2*(α/2) = sinα * * *