Тупым углом будет являться угол при вершине меньшего основания. Проводим ещё одну высоту. Она будет равна первой высоте, параллельна ей и отсекать вместе с ней на большем основании три отрезка, два из которых равны по 6 см (исходя из равенства треугольников, которые равны по катета и гипотенузе), а третий отрезок - центральный, будет равен меньшему основанию, т.к. является противоположной стороной прямоугольника. Далее находим длину большего основания. Оно равно 6см+15см= 21см. Меньшее основание равно 21см-6см-6см = 9 см.
Объяснение:
а) ∠1=37° , ∠7= 143°;
∠7 и ∠8 - смежные углы. Их сумма 180°,
⇒∠8=180°-∠7=180°-143°=37°
⇒ ∠1=∠8=37°
∠1 и ∠8 - соответственные углы при двух прямых а и b и секущей с
Если соответственные углы равны, то прямые параллельны⇒ а ║ b
б) ∠1= ∠6
Но ∠6=∠8 - как вертикальные углы при двух пересекающихся прямых b и с.
⇒∠1=∠8
∠1 и ∠8 - соответственные углы при двух прямых а и b и секущей с, а если соответственные углы равны, то прямые параллельны.
⇒ а ║ b
в) ∠1 = 45°, а ∠7 в три раза больше ∠3
∠1=∠3 - как вертикальные углы при двух пересекающихся прямых а и с.
⇒ ∠3=45°. ∠7=3*45°=135°
∠7 и ∠8 - смежные углы. Их сумма 180°,
⇒∠8=180°-∠7=180°-135°=45°
⇒∠1 = ∠8 = 45°
∠1 и ∠8 - соответственные углы при двух прямых а и b и секущей с
Если соответственные углы равны, то прямые параллельны⇒ а ║ b