Пусть точки касания вписанных окружностей делят стороны треугольника CBE на отрезки (считая от С) z1 z2 z3, так что EC = z1 + z3; CB = z1 + z2; BE = z2 + z3; аналогично для треугольника EBA AE = z5 + z6; AB = z5 + z4; BE = z6 + z4; Надо найти z4 - z2; (это - расстояния от точки B до точек касания окружностей с BE) По условию z4 + z5 = z1 + z2 + 4; z1 + z3 = z6 + z5; (точка E - середина AC, AE = CE) z2 + z3 = z4 + z6; (=BE) Вычитая из третьего уравнения второе, легко найти z4 - z5 = z2 - z1; Если это сложить с первым, то 2*z4 = 2*z2 + 4; откуда z4 - z2 = 2;
Внутренние накрест лежащие углы равны, их две пары, первая пара, например, угол 1 и 3 будут равны по50град. каждый, а вторая пара, к примеру, 2и4 углы будут равны по 130 град., т.к. углы 1и2, 3и4 смежные, которые в сумме дают 180град.=130+50 Тогда, соответственные углы 1и5 равны по 50 град, 4и6 равны по 130град. Также и углы 2и7=по 130 град, как соответственные и углы 3и8= по 50град углы 6и7 равны по 130град., как внешние накрест лежащие углы, как и углы 5и8 равны по 50град. как внешние накрест лежащие углы