6 ед.
Объяснение:
В правильной усеченной пирамиде в основаниях лежат правильные многоугольники, стороны которых соответственно равны между собой. Боковые грани такой пирамиды - равные между собой равнобокие трапеции. Радиусы окружностей, вписанных в основания, проведенные в точки касания сторон оснований с соответственной окружностью Н и Н1, перпендикулярны к сторонам оснований по свойству радиусов, проведенных в точки касания.
Проведем перпендикуляр из точки касания Н1М верхнего основания на нижнее основание. Тогда отрезок Н1Н перпендикулярен стороне основания АВ по теореме о трех перпендикулярах, то есть является искомой высотой боковой грани.
В прямоугольном треугольнике НН1М угол ∠НН1М = 30° по сумме острых углов. Следовательно, НН1 = 2·НМ по свойству катета, лежащего против угла 30°.
НМ = ОН - О1Н1 = 8-5 = 3 ед.
Высота боковой грани НН1 = 6 ед.
4x+12=36
4x=24
x=6 малая сторона
6+6=12большая сторона
Рассмотрим прямоугольный треугольник, в котором катеты оавны 12 и 6, следовательно по теореме Пифагора найдем гипотенузу, которая является диагональю
12 в квадрате+6 в квадрате равно АС в квадрате
значит АС=корень из 180
Пусть точка пересечения диагоналей точка О
Рассмотрим треугольник АОВ основание 12, а боковые стороны равны корень из 180÷2
Равнобедренный треугольник
испустим из вершины к основанию высоту ОН и получим что АН равны 12÷2и найдем по теореме Пифагора эту высоту
(180÷4-36) все под корнем
значит ОН=3
ответ: 3