За умовою задачі в Δ АВС сторона АВ = 14 см, ВС = 10 см, АС = 16 см.
Так як М за умовою середина АВ, то АМ = МВ = АВ : 2 = 14 : 2 = 7 (см)
Так як точка К за умовою середина АС, то АК = КС = АС : 2 = 16 : 2 = 8 (см)
Так як точка М – середина АВ і точка К – середина АВ, то відрізок МК – середня лінія трикутника.
Середня лінія трикутника паралельна третій стороні і дорівнює її половині (властивість середньої лінії трикутника). Значить МК = ВС : 2 = 10 : 2 = 5 (см)
Знайдемо периметр трикутника АМК:
Р = АМ + АК + МК = 7 + 8 + 5 = 20 (см)
Відповідь: 20 см
По условию секущая плоскость параллельна плоскости КМТ.
Точки А и В лежат в плоскости грани МРТ и являются серединами сторон МР и ТР треугольника МТР.
Следваоетльно, прямая АВ параллельна МТ.
Из т.В проведем прямую ВС параллельно КТ.
ВС - средняя линия ∆ КТР.
С- середина КР, АС - средняя линия ∆ МКР и параллельна МК.
Две пересекающиеся прямые АВ и МС плоскости АВС параллельны двум пересекающимся прямым МТ и ТК плоскости МКТ. Это признак параллельности плоскостей, следовательно, АВС - искомое сечение.
AB=AE=3см
BD=EC=7см, из равенства треугольников