Изи
Объяснение:
Задача1:
1)угол MOK(центральный)=дуге MK=78°
2)угол ONK(вписаный)= половине дуги MK=78°:2=39°
3)угол NOK( | радиусу):(по теореме о касательных)
=>(следовательно)=90°
угол x: угол ONK+угол NOK+угол x=180°
( переделаем под угол формулу):
Угол х=180°-(39°+90°)=180°-129°=51°
Задача2:
НЕ ЗНАЮ(((
ПОЯСНЕНИЕ ОБЯЗАТЕЛЬНО ПРОЧИТАЙ,ЧТОБЫ В ДАЛЬНЕЙШЕМ ПОНИМАТЬ,ЧТО Я ПИШУ,ТАК КАК ВРЕМЯ ДЕНЬГИ, ТО:
ВПИСАННЫЙ УГОЛ-В
ЦЕНТРАЛЬНЫЙ УГОЛ0-Ц
РАДИУС-Р
Диаметр-Д
Дуга-д
Угол-У
Половина- п
Известны дуги сумма дуг =360°
=> д KM+д ML+д KL=360°
=> д KL=360°-(д KM+д ML)=360°-(77°+143°)=360°-220°=140°
У M(ВУ:=П д)=140°÷2=70°
Задача10:
Не знаю чего-то не могу увидеть вижу только:
MN-Д
У MKN=90 опирается на Д и по теореме касательных тоже
Примем АМ=МС=y
Примем КМ=х, тогда ВМ=х+1
По т.косинусов
АВ²=ВМ²+АМ²-2•ВМ•АМ•cos(BMA)
KC²=KM²+MC²-2•KM•MC•cos(KMC)
Угол ВМС смежный углу ВМА и равен 180°-45°=135°
cos 45°=√2/2
cos135°= -√2/2
Подставим в уравнения принятые значения отрезков:
АВ²=(х+1)²+у²-2•[(х+1)•у√2]/2
АВ²=х²+2х+1+у² -ху√2-y√2⇒
AB²=х²+у²+2х+1-ху√2-y√2 (1)
КС²=х²+у²-2ху•(-√2/2)
KC²=x²+y²+xy√2 (2)
По условию АВ=КС => уравнение 1=уравнению 2
Вычтя из уравнения (2) уравнение (1), получим
0=ху√2-2х-1+ху√2+y√2 =>
(2xy√2+y√2) - (2х+1)=0
y√2(2x+1)-(2x+1)=0
Сократим на (2х+1)
y√2-1=0
y√2=1 =>
y=1/√2
AC=2y=2/√2=√2