тк сумма всех углов треугольника равна 180 градусам , то все стороны равны 60 градусам, получается что треугольник абс -равносторонний ,а значит все стороны равны (8 см) . Значит площадь треугольника = (8+8+8) * = 12 см квадратных
Пусть x приходится на 1 часть. 1x-1 угол. 2x- 2 угол. 3x-3 угол. Сумма углов треугольника равна 180 градусов. x+2x+3x=180. 6x=180. x=30. 1 угол - 30 градусов, 2 - 60 градусов, 3 - 90 градусов. Треугольник у нас получается прямоугольным. Гипотенуза из условия будет равна 36. Катет, лежащий напротив угла в 30 градусов, равен половине гипотенузы = 18. Оставшийся катет можно найти по т. Пифагора: 36^2-18^2=оставшийся катет в квадрате. 972=катет в квадрате. Он будет равен 18*корень из 3. Наименьшая сторона равна 18.
1. Рассмотрим прямоугольный треуг-ик ABD. Здесь катет АВ, лежащий против угла в 30°, равен половине гипотенузы AD: AB=1/2AD, AD=2AB Зная, что сумма острых углов прямоугольного треуг-ка равна 90°, находим угол А: <A=90-<ADB=90-30=60° Угол D в трапеции ABCD равен: <D=30+30=60° Углы при основании трапеции равны, значит, она равнобедренная, и АВ=CD. Рассмотрим треугольник BCD. <CBD=<ADB как накрест лежащие углы при пересечении двух параллельных прямых AD и ВС секущей BD. <CDB=30°, значит треугольник BCD равнобедренный, поскольку углы при его основании BD равны. ВС=CD. Но CD=AB, значит ВС=CD=AB Таким образом мы можем принять АВ, ВС, CD за х, а AD - за 2х (т.к. AD=2AB см. выше). Зная периметр, запишем: AB+BC+CD+AD=P x+x+x+2x=60 5x=60x=12 AD=2*12=24 см
2. Рассмотрим прямоугольный треуг-ик АЕВ. Он равнобедренный по условию (диагональ ВЕ равна стороне АЕ, она будет равна и стороне ВС). В равнобедренном треуг-ке углы при основании равны. Найдем их: <A=<ABE=(180-<AEB):2=(180-90):2=45° Поскольку противоположные углы параллелограмма равны, то <C=<A=45° <ABC=<AEC=90+<ABE=90+45=135°