5) Треугольники DCE и ABC подобны по трем параллельным сторонам (BC - общая).
D=A=72
DCE=B=26
CED=180-72-26=82
6) Треугольники ABC и FDE равны по катету и гипотенузе, A=F. Накрест лежащие углы равны - прямые параллельны.
Площадь S1 боковой поверхности призмы равна произведению периметра перпендикулярного сечения призмы на её боковое ребро. Плоскость перпендикулярного сечения пересекает боковые грани по их высотам. Поэтому периметр перпендикулярного сечения равен сумме этих высот, т. е. 3*2=6.
Значит, S1 = 3al = 18
ПустьS -- площадь основания призмы. Площадь ортогональной проекции основания призмы на плоскость, перпендикулярную боковым рёбрам, равна площади перпендикулярного сечения, делённой на косинус угла между плоскостями основания и перпендикулярного сечения. Этот угол равен углу между боковым ребром и высотой призмы, т. е. 60∘.
Поэтому
S2= 2√3Следовательно, площадь полной поверхности призмы равна
5. На рисунке прямые CD и EF параллельны сторонам треугольника ABC. Найдите углы треугольника CED, если ∠A = 72°, ∠B = 26°
Рассмотрим ΔABC
∠C = 180 - ∠A - ∠B = 180 - 72 - 26 = 82° (сумма углов треугольника равна 180°)
Рассмотрим четырехугольник AFEC
∠F = 180 - ∠A = 180 - 72 = 108° (односторонние при FD || AC и секущей AB)
∠E = 180 - ∠C = 180 - 82 = 98° (односторонние при FD || AC секущей BC)
∠CED = 180 - ∠FEC = 180 - 98 = 82° (смежные)
Рассмотрим четырехугольник AEDC
FD || AC (по условию)
AF || CD (по условию)
==> четырехугольник AEDC - параллелограмм
∠A = ∠D = 72° (в параллелограмме противоположные углы равны)
Рассмотрим ΔCED: ∠E = 82°, ∠D = 72°, ∠C - ?
∠C = 180 - ∠E - ∠D = 180 - 82 - 72 = 26° (сумма углов треугольника равна 180°)
ответ: ∠E = 82°, ∠D = 72°, ∠C = 26°
6. На рисунке треугольники ABC и DEF - прямоугольные, AB = DF, BC = DE. Докажите, что прямые AB и DF параллельны.
Рассмотрим ΔDEB и ΔBCA - прямоугольные
AB = DF (по условию)
BC = DE (по условию)
==> ΔDEB = ΔBCA по гипотенузе и катету ==> ∠F = ∠A - накрест лежащие для прямых DF и AB и их секущей AF
При параллельных прямых и их секущей накрест лежащие углы равны
==> DF || AB
Ч. т. д.