Ясно, что сторона большого квадрата равна √49=7/см/, и если рассмотреть верхний левый треугольник, в котором гипотенуза АВ равна 5см, введя переменную х- пусть это будет меньший катет, тода больший катет равен (7-х),по теореме Пифагора
х²+(7-х)²=25; х²+х²-14х+49=25; 2х²-14х+24=0; х²-7х+12=0; По Виета х=3 или х=4, т.е. если один катет 3см, то второй 4см, и наоборот.
А это и есть стороны тех четырех прямоугольников, зная площадь одного, найдя площадь четырех и от площади квадрата отняв полученную площадь, найдем площадь маленького квадрата
Она равна 49-4*4*3=49-48=1/см²/
ответ 1см²
Ясно, что сторона большого квадрата равна √49=7/см/, и если рассмотреть верхний левый треугольник, в котором гипотенуза АВ равна 5см, введя переменную х- пусть это будет меньший катет, тода больший катет равен (7-х),по теореме Пифагора
х²+(7-х)²=25; х²+х²-14х+49=25; 2х²-14х+24=0; х²-7х+12=0; По Виета х=3 или х=4, т.е. если один катет 3см, то второй 4см, и наоборот.
А это и есть стороны тех четырех прямоугольников, зная площадь одного, найдя площадь четырех и от площади квадрата отняв полученную площадь, найдем площадь маленького квадрата
Она равна 49-4*4*3=49-48=1/см²/
ответ 1см²
4a=100⇒ a=25. Половины диагоналей и сторона ромба образуют прямоугольный треугольник, поэтому по теореме Пифагора
(d_1/2)^2+(d_2/2)^2=a^2;
(d_1)^2+(d_2)^2=4·25^2
d_1+d_2=62⇒ (d_1)^2+2d_1d_2+(d_2)^2=62^2
Вычитая из одного равенства другое, получаем
2d_1d_2=62^2-4·25^2=4(31^2-25^2)=4·(31-25)(31+25)=4·6·56=4·336.
Площадь ромба равна половине произведения диагоналей ⇒
S=336