1. Каждая сторона треугольника составлена из 2 таких отрезков. Поэтому их длины будут 3+4 = 7, 3+5 = 8 и 4+5 = 9... это обычный остроугольный треугольник без особых примет. Уж точно не прямоугольный.
2. Дуга АСВ равна 150 градусам, а дуга АМВ - 210 градусов. Угол АМВ опирается на дугу АСВ, то есть равен 150/2 = 75 градусов, угол АВМ = 90 градусов - АМ диаметр, угол АСВ = 210/2 = 105 градусов (независимо от положения точки С).
3. пусть CE = 3*x; ED = 4*x; CD = 7*x;
(3*x)*(4*x) = 3*36; x = 3;
CD = 21; наименьшее значение радиуса - если АВ еще "влезает" в окружность, то есть 39/2 = 19,5
4. Половина основания 6, площадь 48, периметр 32, r = 2*S/P = 3;
R = 10*10*12/(4*S) = 25/4;
4 пункт подробнее с чертежом и другим решением
43
Объяснение:
Число пересечений не параллельных прямых можно представить в виде прогрессии. Где N - число прямых. Аn это N-й член прогрессии или число пересечений N прямых. Тогда Аn = Аn-1 + (N - 1), где Аn-1 - предыдущий член прогрессии. (N - 1) это, как постоянный член арифметической прогрессии, но здесь он меняется, поэтому найти любой член формулами арифметической прогрессии у меня пока не получается, но можно посчитать вручную или забить формулу в Exel. Например для 2х прямых формула принимает вид 0+2-1=1 и т. д. Для десяти прямых - 45 пересечений.
Теперь три прямых, которые пересекаются в 1й точке теряют 2 пересечения. Это число нужно вычесть из общей суммы.
6
AD=25
AB=15
BAC=DAC
DB и АВ перпендиккулярны
Накрест лежащие углы CAD и АСВ равны. Тогда АВС равнобедренный и ВС=15
Треугольники ABH и ABD подобны. Отношение:
АВ:АН=АD:АВ
15:АН=25:15
АН=9
Остается найти ВН по теореме Пифагора:
ВН=корень(15^2-9^2)=12
S=(15+25)/2*12=240
ответ: 240