а - сторона ромба
периметр
Р = 4а = 52
а = 52/4 = 13 см
Диагонали ромбы d1 и d2 перпендикулярны =>
d1 / d2 = 5 / 12 или d1 = 5d2 / 12
Cтороны прямоугольных треугольников, образуемых диагоналями,будут ^
d1/2, d2/2 -катеты
а - -гипотенуза (она же сторона ромба)
По теореме пифагора
(d1/2)^2 + (d2/2)^2 = a^2
d1^2 + d2^2 = 4a^2
(5d2 /12)^2 + d2^2 = 13^2
25d2^2 + 144d2^2 = 13^2 * 12^2
169d2^2 = (13^2*12^2
13^2 d2^2 = 13^2 * 12^2
d2^2 = 12^2
d2 = 12 см - вторая диагональ
d1 = 5d2 / 12 = 5 * 12 / 12 = 5 - первая диагональ
ответ: диагонали d1=5 cм, d2 = 12 см
α=180°: Sс = 8π ≈ 25,13 см²
α=90°: Sс = 4π ≈ 12,57 см²
α=60°: Sс = π*8/3 ≈ 8,38 см²
Объяснение:
Площадь круга:
Sк = π*R², где R - радиус круга.
Sк = 16π см²
Площадь сектора линейно зависит от величины центрального угла. Для сектора с центральным углом α, выраженным в градусах, формула площади выглядит так:
Sс = π*R²*α/360.
Если сравнить формулы площади круга и площади сектора, то можно сделать вывод, что:
Sс = Sк*α/360.
Значит для
α=180°: Sс = 16π*180/360 = 8π ≈ 25,13 см²
α=90°: Sс = 16π*90/360 = 4π ≈ 12,57 см²
α=60°: Sс = 16π*60/360 = π*8/3 ≈ 8,38 см²
Катет, лежащий против угла в 30 градусов равен половине гипотенузы, т.е. MC=1/2 AM=9 см
По теореме Пифагора AC=sqrt(AM^2 - MC^2)=sqrt(243)