Решение: Пусть ABCDA1B1C1D1 – данный параллелепипед, площадь диагонального сечения ACC1A1 равна P, а диагонального сечения BDD1B1 равна Q. Тогда
AC*h=P, BD*h=Q, где – h высота параллелепипеда (так как диагональные сечения прямого параллелепип
еда - прямоугольники)
Отсюда отношение диагоналей AC:BD=P:Q.
Пусть О – точка пересечния диагоналей ромба.
Диагонали ромба(как параллелограмма) пересекаются и в точке пересечения делятся пополам:
Диагонали ромба пересекаются под прямым углом (свойство ромба).
Поэтому
AO:BO=(1\2*AC) : (1\2*BD)=P:Q
Пусть AO=P*x, тогда BO=Q*x, AC=2P*x, BD=2Q*x
по теореме Пифагора:
AB=корень (AO^2+BO^2)= корень (AO^2+BO^2)= корень ((P*x)^2+(Q*x)^2)=
= корень (P^2+Q^2)*х
AC*h=P, BD*h=Q, значит
2P*x*h+2Q*x*h=P+Q
2(P+Q)*x*h=P+Q
h=1\2*1\x
Площадь боковой поверхности равна 4* AB*h=
=4* корень (P^2+Q^2)*х*1\2*1\x=2*корень (P^2+Q^2).
ответ: 2*корень (P^2+Q^2).
В прямоугольном треугольнике АКС угол К равен 60° (дано). =>
∠САК = 30°, значит АК - биссектриса угла А.
Биссектриса делит противоположную сторону в отношении прилежащих сторон (свойство). Тогда СК/КВ = АС/АВ.
Но АВ = 2·АС (так как катет АС лежит против угла В, равного 30°). =>
СК/КВ = АС/(2АС) = 1/2. =>
СК = КВ/2 = 12/2 = 6 см.
Или так:
∠АКС = 60° (дано) => ∠САК = 30° (по сумме острых углов прямоугольного треугольника САК). => ∠ВАК = 30°. =>
Треугольник АКВ равнобедренный, так как ∠В = 30° (по сумме острых углов прямоугольного треугольника АВС). и ∠ВАК = 30° (доказано выше). =>
АК = ВК = 12 см.
В прямоугольном треугольнике АКС угол КАС = 30°, значит
СК = АК/2 = 12/2 = 6см.
Или так:
Пусть СК = х. => ВС = 12+х.
В прямоугольном треугольнике АВС угол В равен 30° по сумме острых углов.
Tg(∠B) = tg30 = AC/BC = √3/3. =>
AC = √3·(12+х)/3. (1)
В прямоугольном треугольнике АКС угол К равен 60° (дано).
Tg(∠К) = tg60 = AC/CК = √3. =>
AC = х√3. (2).
Приравняем (1) и (2): √3·(12+х)/3 = х√3. => 12+х = 3х. =>
СК = х = 6 см.