Две прямые, пересекаясь, образуют две пары вертикальных углов. Любая точка биссектрисы угла равноудалена от сторон этого угла, значит геометрическим местом точек М, равноудалённых от прямых р и q, будут биссектрисы всех углов, образованных при пересечении этих прямых. Биссектрисы вертикальных углов лежат на одной прямой, биссектрисы смежных углов перпендикулярны, значит все точки М лежат на двух взаимно перпендикулярных прямых, совпадающих с вышеназванными биссектрисами.
Центр вписанной в угол окружности лежит на его биссектрисе. Окружность радиуса 8 - вневписанная, касается сторон двух углов - А и С, ее центр лежит на пересечении биссектрис этих углов, смежных с углами А и С ∆ АВС соответственно,⇒ СО - биссектриса и делит угол НСК пополам. . Центр окружности, вписанной в треугольник АВС, лежит в точке пересечения биссектрис. ВН и СО₁- биссектрисы. СО₁ делит угол ВСН пополам. АСК - развернутый угол и равен 180º Сумма половин углов АСН и ОСН равна половине развернутого угла. Угол ОСО₁=180°:2=90°⇒ ∆ ОСО₁ - прямоугольный с прямым углом С. АН - высота и медиана равнобедренного треугольника АВС, следовательно, делит основание АС на два равных отрезка: СН=АН=6. СН ⊥ АН⇒ является высотой треугольника ОСО₁.
Высота прямоугольного треугольника, проведенная из вершины прямого угла, есть среднее пропорциональное между отрезками, на которые делится гипотенуза этой высотой;⇒
R1, r2, r3 - радиусы вписанных окружностей треугольников СНА, CНB и АВС соответственно. В прямоугольном тр-ке высота, опущенная из прямого угла, делит его на два подобных тр-ка, которые, в свою очередь, подобны главному тр-ку. Значит отношение радиусов вписанных окружностей равно отношению соответственных сторон треугольников. Пусть гипотенузы тр-ков СНА и CHВ равны: АС=5х и ВС=12х, тогда гипотенуза тр-ка АВС: АВ=√(АС²+ВС²)=√(5²х²+12²х²)=√169х²=13х. r1:r2:r3=АС:ВС:АВ=5х:12х:13х=5:12:13 ⇒ r3=13 см - это ответ.
Любая точка биссектрисы угла равноудалена от сторон этого угла, значит геометрическим местом точек М, равноудалённых от прямых р и q, будут биссектрисы всех углов, образованных при пересечении этих прямых.
Биссектрисы вертикальных углов лежат на одной прямой, биссектрисы смежных углов перпендикулярны, значит все точки М лежат на двух взаимно перпендикулярных прямых, совпадающих с вышеназванными биссектрисами.