Уравнение окружности имеет вид :
(x - x₀)² + (y - y₀)² = R² ,
где x₀, y₀ - координаты центра окружности, R - радиус окружности
(x - 1)² + (y + 2)² = 1 ⇒ Центр окружности О(1; -2), радиус R=1
При симметрии относительно оси OY радиус и координата у не изменятся, а координата х поменяет знак
(x + 1)² + (y + 2)² = 1 ⇒ Центр окружности O₁(-1; -2), радиус R=1
При симметрии относительно оси OX радиус и координата х не изменятся, а координата у поменяет знак
(x - 1)² + (y - 2)² = 1 ⇒ Центр окружности O₂(1; 2), радиус R=1
При последовательной симметрии относительно осей ОX и OY (центральная симметрия) радиус не изменится, а обе координаты поменяют знаки
(x + 1)² + (y - 2)² = 1 ⇒ Центр окружности O₃(-1; 2), радиус R=1
Мы хорошо помним формулу площади треугольника:
S=a•h:2, где а - сторона, h- высота, проведенная к этой стороне.
Но есть и другие формулы.
Эту задачу нужно решать по формуле
S=a•b•sinα:2, где а и b – стороны треугольника, α – угол между ними.
sin 30°=1/2