1.
М - середина АВ, значит МВ = АВ/2
Р - середина МВ, значит РВ = МВ/2 = АВ/4
К - середина ВС, значит КС = ВС/2
Е - середина КС, значит ЕС = КС/2 = ВС/4
N - середина АС, значит NA = АС/2
G - середина NA, значит GA = NA/2 = AC/4
По условию
PB + EC + GA = 12
АВ/4 + ВС/4 + АС/4 = 12
1/4 · (АВ + ВС + АС) = 12
АВ + ВС + АС = 12 · 4 = 48 (см)
2.
Из решения первой задачи следует, что
АР = 3/4 АВ
ВЕ = 3/4 ВС
CG = 3/4 AC
По условию
AP + BE + CG = 108
3/4 АВ + 3/4 ВС + 3/4 АС = 108
3/4 · (АВ + ВС + АС) = 108
АВ + ВС + АС = 108 · 4/3 = 144 (см)
1) F=М=100
N+Е=360-(100+100)=160
N=Е=160:2=80
F=100; N=80; М=100; Е=80
2) F=180-90=90
М=180-65=115
F=90; M=115; N=65; E=90
3) К=180-(F+М)=180-(35+90)=45
К=R=45
M=F=(360-(45+45)):2=170:2=85
K=45; M=85; R=45; F=85
Объяснение:
1) Поскольку эта фигура представляет собой равносторонний параллелограмм, угол F будет равен углу N, а угол М будет равен углу Е. Так как соединение внутренних углов параллелограмма составляет 360 градусов, мы вычитаем из 360 градусов соединение градусов F и N. По той же причине что бы найти углы М и Е, делим получившееся число на 2.
2) Так как соединение смежных углов трапеции равны 180 градусам, с вычитании из 180 градусов и градус угла Е (который равен 90, потому что это прямоугольная трапеция), мы можем определить градус F. Так же мы находим угол М.
( Мы можем проверить правильность решении: 360-90-65=205 90+115=205)
3) Соединение внутренних углов треугольника равна 180 градусам, поэтому что бы найти градус К мы можем вычитать из 180 градусов соединение градусов F и М. Так как дана равносторонняя трапеция угол К равен углу R, а угол F равен углу М. Что бы найти углы F и М вычитаем из 360 (потому что соединение внутренних углов трапеции составляет 360 градусов) соединение градусов К и R, потом делим на два (потому что угол F равен углу М).
5у - 4х = -1
таких точек бесконечно много, подберём несколько таких:
х=1 5у-4=-1
5у=3
у=0,6
(1; 0,6)
х=1,2 5у - 6=-1
5у = 5
у = 1
(1,2; 1)