Вправильной треугольной пирамиде sabc (с вершиной s) сторона основания равна 2√3, а боковое ребро равно 3. найдите расстояние от точки c до плоскости abs. ответ должен получится√(15/2)
Углы прямоугольника равны 90º.⇒ Углы вписанного прямоугольника - вписанные и опираются на половину окружности, т.е. опираются на диаметр. Диагональ вписанного прямоугольника - диаметр описанной окружности. d=2R=10 Диагональ вписанного прямоугольника равна 10 (ед. длины) –––––––––– Как вариант - диагональ делит прямоугольник на два равных прямоугольных треугольника и является их общей гипотенузой. Центр описанной окружности прямоугольного треугольника - середина гипотенузы. Следовательно, половина диагонали равна радиусу, а вся диагональ - диаметру описанной окружности. d=10 (ед. длины)
Углы прямоугольника равны 90º.⇒ Углы вписанного прямоугольника - вписанные и опираются на половину окружности, т.е. опираются на диаметр. Диагональ вписанного прямоугольника - диаметр описанной окружности. d=2R=10 Диагональ вписанного прямоугольника равна 10 (ед. длины) –––––––––– Как вариант - диагональ делит прямоугольник на два равных прямоугольных треугольника и является их общей гипотенузой. Центр описанной окружности прямоугольного треугольника - середина гипотенузы. Следовательно, половина диагонали равна радиусу, а вся диагональ - диаметру описанной окружности. d=10 (ед. длины)
Расстояние от точки до плоскости равно длине отрезка, проведенного перпендикулярно к этой плоскости.
Проведем через ребро SC и высоту пирамиды плоскость перпендикулярно плоскости ASB.
SM⊥АВ и СМ⊥АВ. Отрезок СН лежит в плоскости MSC, он перпендикулярен линии пересечения плоскостей SM ⇒
CH перпендикулярен плоскости ASB
Искомое расстояние равно длине СН.
Основание правильной треугольной пирамиды - правильный треугольник. Все его стороны равны, все углы равны 60°⇒
1) СМ=АС•sin60°=2√3•√3:2=3
2) SM=√(SA²-AM²)
AM=AB:2=√3
SM=√(9-3) =√6
3) SO=√(SM²-OM²)
OM=CM:3 =1( медианы точкой пересечения делятся в отношении 2:1)
SO=√(6-1)=√5
4) sin ∠SMC=SO:SM=√5:√6
5) CH=CM•sin SMC=3•√5:√6=(√5•√2•√3):2=√15:√2 или √(15/2)