Точки соприкосновения вписаного круга делит гипотенузу прямоугольного треугольника на отрезки, один с которых на 14см больше за другой. найдите площадь треугольника, если радиус вписаного круга = 4см
1. Центр описанной окружности равнобедренного треугольника лежит на высоте, проведённой к основанию треугольника.
Верно не всегда. Если угол при вершине треугольника тупой, то центр описанной окружности лежит на продолжении высоты, проведенной из вершины, вне треугольника.
2. Если в треугольнике АВС углы А и В равны соответственно 40 и 70, то внешний угол при вершине С этого треугольника равен 70.
Неверно. Внешний угол треугольника равен сумме двух внутренних, не смежных с ним. Значит внешний угол при вершине С равен 40° + 70° = 110°.
3. Все хорды одной окружности равны между собой.
Не верно. Хорда - отрезок, соединяющий любые две точки окружности. На рисунке АВ ≠ CD.
В первой задаче пользуемся формулой: площадь треугольника равна произведению его сторон на синус угла между ними, в итоге получаем 6*6*корень из 3, деленное на 2. Решаем, получаем 18 корней из 3. Во второй задаче площадь трапеции находится по формуле: полусумма оснований умножить на высоту. Нам не известна высота, но её находим через получившийся треугольник ABH, где Н=90 гр., А=30 гр. Получается, через синус угла А находим сторону ВН, которая получается равной 8 см. И уже по формуле площади находим её: 12+20/2*8=128 см.
Радиус окружности, проведенный в точку касания, перпендикулярен касательной.
Значит ОК⊥АВ, ОМ⊥АС и ОР⊥ВС.
Отрезки касательных, проведенных из одной точки, равны. Обозначим один отрезок гипотенузы х, а другой х + 14. Тогда
АК = АМ = х
ВК = ВР = х + 14
СМОР - квадрат, СМ = СР = 4.
Составим уравнение по теореме Пифагора:
АВ² = АС² + ВС²
(x + (x + 14))² = (x + 4)² + (4 + x + 14)²
(2x + 14)² = (x + 4)² + (x + 18)²
4x² + 56x + 196 = x² + 8x + 16 + x² + 36x + 324
2x² + 12x - 144 = 0
x² + 6x - 72 = 0
x = 6 или х = - 12 - не подходит по смыслу задачи.
АС = 6 + 4 = 10 см
ВС = 4 + 6 + 14 = 24 см
Sabc = 1/2 AC · BC = 1/2 · 10 · 24 = 120 см²