каждый из 2 противоположных углов является вписаным (то есть его вершина лежит на окружности, и он опирается на дугу). Его величина измеряется половиной дуги, на которую он опирается. А сумма их измеряется половиной ВСЕЙ окружности, то есть равна 360/2 = 180;
термин "измеряется" означает, что вписанный угол равен половине центрального угла дуги, на которую он опирается.
Если надо, могу рассказать, как это доказать. Для начала рассмтриваются вписанные углы, у которых одна сторона - диаметр. Если провести из центра, лежащего на стороне-диаметре, радиус в другой конец дуги, то возникает равнобедренный треугольник, у которого 2 РАВНЫХ угла при основании равны (один из них - наш угол :)), а центральный угол равен их сумме, как веншний угол треугольника. Доказав это для частного случая, мы доказали все, поскольку любой угол можно представить в виде суммы или разности 2 таких углов. Вобщем-то это все доказательство.
Рассмотрим треугольник ADC: <dca=2*<dac (треуг. АBC - равнобедр., углы при основании равны, аd - биссектриса) => x+2x+120=180
3x=60
x=20
<C=<A=40
<B=180-40*2=100