Плоский угол при вершине пирамиды- это угол при вершине боковой грани, противолежащей стороне при основании пирамиды.
Так как пирамида правильная, то боковые рёбра равны треугольник боковой грани равнобедренный, а учитывая то, что угол при его вершине равен 60°, он ещё и правильный, то есть равносторонний, значит все рёбра пирамиды равны.
Высота пирамиды имеет основание в центре описанной окружности около основания пирамиды.
Пусть сторона основания (ребро пирамиды) равна а, тогда R=a/√3.
В прямоугольном треугольнике, образованном высотой пирамиды, её боковым ребром и радиусом описанной около основания окружности:
a²=R²+h²,
a²=a²/3+4²,
a²-16=a²/3,
3а²-48=а²,
2а²=48,
а²=24.
Площадь боковой грани: S=a²√3/4=24√3/4=6√3 см².
Площадь боковой поверхности: Sб=3S=18√3 см² - это ответ.
Мне решили на этом сайте очень хороший человек,думаю это решение и тебе пригодиться:)поблагодарить можешь ellagabdullina
По теореме Пифагора найдем в нем гипотенузу ВС.
ВС^2 = 24^2 + 18^2 = 576 + 324 = 900
ВC = корень из 900 = 30
Воспользуемся свойством пропорциональных отрезков в прямоугольном треугольнике АВС.
ВД = под корнем СД*АД
24 = под корнем 18 *АД
24^2 = 18*АД
576 = 18АД
АД = 576 : 18 = 32
Тогда АС = 32+18 = 50
В прямоуг. треугольнике АВС найдем катет АВ по теореме Пифагора
АB^2 = 50^2 - 30^2 = 2500 - 900 = 1600/ Тогда АВ = корень из 1600 = 40(см)
cos A = AB/AC = 40/50 = 4/5 = 0,8
ответ: АВ = 40 см; cos А = 0,8
Р (АСВ)=АВ+АС+ВС=90+150+120=360мм