Объяснение:
1 -е задание отправили, как я понял. Его решать не надо.
***
2. ABCD - четырехугольник. CD=8 см. AC - диагональ.
По теореме Пифагора
AD=√17²-8²=√289-64=√225=15 см.
***
3. Высота в равнобедренном треугольнике является его медианой и биссектрисой. Следовательно:
АЕ=СЕ=24/2=12см.
Боковая сторона АВ=ВС=√12²+5²=√144+25=√169=13 см.
***
4. ABCD - трапеция. ВЕ и СF высоты Из ΔАВЕ АЕ=√10²-8² =√100-64=√36=6 см.
АЕ=DF=6 см. AD =ВС+2*АЕ=7+2*6= 19 см.
S трапеции =h(a+b)/2=8(7+19)/2=8*26/2 =104 см ².
***
5. Из ΔACD
√(5x)²-x² = 12;
√25x²-x²=12;
√24x²=12;
2x√6=12;
x=√6 см - сторона АВ=CD
AC=5√6 см.
Площадь ΔАВС=S(ABCD)/2=12*√6/2 = 6√6 см ².
С другой стороны SΔABC=AC*BH/2=6√6 см ².
Откуда BH=2S/AC=12√6: 5√6= 2.4 см.
1. АОС = DOB
2. КМN=KPN
Объяснение:
1.Розглянемо трикутники АОС і DOB . В них СО = OB ( за умовою) . CD Х АВ в т. О. ( це пояснює те, що СД поділений на 2 рівні частини, тобто СО= ОД) Виходить, що ОА=ОВ.
Отже трикутник АОС і ДОВ є рівнобеденими ( за двома сторонами і спільною вершиною)
Доведено
2. Розглянемо трикутники КМН і КРН. В них МН = КР ( за умовою) , КМ = РН ( за умовою) , кут НКР = КНР=МНК=МКН ( за умовою) . К прямокутнику всі кути рівні =90°, тобто кут Р = куту М.
Виходить, що дані трикутники рівні за 2 сторонами, кутами при основі і вершиною цих трикутників.
Доведено
3а (3*(-1);3*2)
То есть, получаем 3а (-3;6)
Теперь находим вектор b/2
b/2 (2/2; 6/2)
То есть, получаем b/2 (1;3)
Теперь находим вектор с.
с (-3-1;6-3)
с (-4;3)
Так как просят указать длину, рассчитываем ее по формуле : с (по модулю) = корень квадратный из а1+а2.
Получаем,
с (по модулю) = корень из 16+9. То есть ответ: 5 . Длина равна 5.