М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
karina694
karina694
30.06.2022 07:33 •  Геометрия

Напишите сказку о принципах подобия треугольников

👇
Ответ:
AzatDit
AzatDit
30.06.2022

Жил-был на свете треугольник. Он был молод и очень одинок. Он мало знал о том мире, где жил. И решил треугольник отправиться в путешествие, чтобы найти друзей и узнать побольше об окружающем мире.

Шел он, шел, долго ли, коротко ли, и вдруг увидел детей, играющих в мячик. Пригляделся - да это же треугольники! Подбежал к ним и заговорил:

- Привет, братья-треугольники!

- Привет, треугольник. Что ж ты такой радостный?

- А как же? Собратьев встретил! Смотрите, ведь мы с вами одинаковые!

- Экий ты глупый, треугольник! Какие же мы одинаковые? Неужели ты не знаешь первого правила равенства треугольников? - спросил у него второй треугольничек.

- Какое еще первое правило равенства? - удивленно спросил молодой треугольник.

- Если две стороны и угол между ними одного треугольника равны двум сторонам и углу между ними другого треугольника, то они равны. Посмотри, у нас с треугольничком и стороны меньше твоих, и углы. Мы совсем неодинаковые.

Расстроился треугольник, пошел дальше. Идет он, идет, и видит: сидит на скамейке еще один треугольник, старый-престарый. Подошел треугольник к старику и говорит:

- Привет, дедушка. Неужели и ты от меня чем-то отличаешься?

- Ну, конечно, милок! Ты посмотри: я треугольник равнобедренный, а ты - нет.

- Что ты такое говоришь, дедушка? Равнобедренный, нет, что за глупости?

- Экий ты неразумный еще! Смотри, у тебя каждая сторона немножко больше другой, а у меня - все равны. Мы с тобой неодинаковые.

Снова расстроился треугольник. Пустился в путь снова. Шел он долго ли, коротко ли. Устал, присел на камешек отдохнуть. Видит, идет мимо него треугольник с котомкой. Обернулся на наш треугольник, подошел к нему, сел рядом и молчит. Треугольник спрашивает у незнакомца:

- Куда путь держишь, брат-треугольник?

- Никуда. Путешествую, пытаюсь мир познать, друзей найти. И все какие-то разные.

- Я тоже. Измеримся что ли, для интереса? Вдруг, мы одинаковые?

И решили они попробовать, все равно делать нечего. Нашел где-то треугольник линейку и измерил все стороны и углы между ними. И оказалось так, что все стороны и углы равны у этих двух треугольников. И обрадовались они безмерно. И решили они путешествовать вместе по разным уголкам мира, но не ссориться, ведь они равны. И жили они потом долго и счастливо.

4,7(54 оценок)
Открыть все ответы
Ответ:
simeika98p0c45h
simeika98p0c45h
30.06.2022

ответ: АС≈45,4 см, МС=5√37

Объяснение:

Не рассматривая отрезок АС, который проведен в середине ΔАВС, найдем сторону АС ΔАВС и проекцию МС. Рассмотрим ΔАВМ. В нем АВ - гипотенуза, а ВМ и АМ катеты. Найдем ВМ по теореме Пифагора:

ВМ²=АВ²-АМ²=30²-15²=900-225=675; ВМ=√675=√(25×9×3)=5×3√3=15√3см

Рассмотрим ΔВСМ. В нем ВС - гипотенуза, а ВМ и МС - катеты. Найдем МС по теореме Пифагора:

МС²=ВС²-ВМ²=40²-(√675)²=1600-675=925; МС=√925=√(25×37)=5√37

АС=АМ+МС=15+5√37.

Можно так и оставить, поскольку  целые числа и числа с корнями не складываются, но если нужно вычислить, то найдем приблизительное значение корня, округлив до сотых: √37≈6,08, подставим его вместо знака корня:

АС=15+5×6,08=15+30,4=45,4см

4,6(33 оценок)
Ответ:
Площадь четырёхугольника вычисляется по формуле:
s = \frac{1}{2} \times d_{1} \: \times d_{2} \times sina \\

где d1 , d2 – диагонали четырёхугольника,
а – угол между диагоналями ( 0° < а ≤ 90° )
Диагонали квадрата пересекаются под прямым углом, а у прямоугольника – под острым углом.
_____________________________

Площадь квадрата:
s_{k} = \frac{1}{2} \times d \times d \times sin90 = \frac{1}{2} \times {d}^{2} \times 1 = \frac{ {d}^{2} }{2} \\

Площадь прямоугольника:
s_{p} = \frac{1}{2} \times d \times d \times sina = \frac{ {d}^{2} \times sina }{2} \\
______________________________

Сравним площади данных четырёхугольников:

S (k) V S (p)

( 1/2 ) × d² V ( 1/2 ) × d² × sina

1 V sina

“ V ” – знак сравнения ( < , = , > , ≤ , ≥ )

Все значения синуса принадлежат промежутку [ – 1 ; + 1 ] . В нашем случае подходит промежуток ( 0 ; 1 ]
Из этого следует, что единица – максимальное значение синуса угла , то есть sin90°. Значит, sinа < 1
Соответственно, площадь прямоугольника будет меньше площади квадрата, что и требовалось доказать.
4,4(35 оценок)
Новые ответы от MOGZ: Геометрия
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ