ABC = 110° Представлю углы ABF и CBF в виде х Пусть ABF = х, тогда CBF = х + 12° Тогда получим, что ABC = х + х + 12 = 110° a) Решим уравнение и найдём ABF и CBF х + х + 12° = 110° 2х + 12° = 110° 2х = 98° х = 49° => ABF = 49° CBF = 49° + 12° = 61° б) найду меру угла, образованного биссектрисой углов ABF и CBF Обозначу биссектрисы буквами D и E так как биссектрисы делят углы на два равных угла, разделю зачения углов ABF и CBF и сложу их.
Дуга СD = 2 * ∠СBD = 2 * 27 = 54°
Дуга AD = 2 * ∠ACD = 2 * 54 = 108°
Дуга AB = 2 * ∠ADB = 2 * 62 = 124°
Дуга BC = 360 - (54 + 108 + 124) = 74°
∠АВС опирается на дугу ADC.
Дуга АDС = дуга АD + дуга СD = 108 + 54 = 162°
∠АВС = 162/2 = 81°
∠ВСD опирается на дугу ВAD.
Дуга ВАD = дуга АВ + дуга АD = 124 + 108 = 232°
∠ВСD = 232/2 = 116°
∠АDС опирается на дугу АВС.
Дуга АВС = дуга АВ + дуга ВС = 124 + 74 = 198°
∠АDС = 198/2 = 99°
Сумма углов четырехугольника = 360°, отсюда:
∠DАВ = 360 - (81 + 116 + 99) = 64°